
Distributed Ambient Environment Sensing Using Mobile Devices

Amol Bhave
ambhave

Lara Araújo
larat

Lucas Morales
lucasem

1 Introduction

With the advent of small hardware devices, it is now
possible to deploy battery-powered ambient environment
sensors throughout large campuses. These sensors are
most commonly accompanied by expensive Bluetooth
access points used to establish communication with a
central server. However, purchasing and maintaining this
infrastructure is financially infeasible.

In this report, we specify and analyze the design of
a low-cost, reliable, durable, and configurable campus-
wide ambient environment sensing system. This sys-
tem is intended to be deployed on the campus of Mas-
sachusetts Institute of Technology (MIT) and to be used
by MIT Department of Facilities (Facilities) and the MIT
community.

To reduce the cost of this system, the expensive BLE-
equipped access points are replaced by personal mobile
devices to relay sensor data to the central server.

To achieve reliable communication between the sensor
nodes and the central server, our design implements end-
to-end acknowledgements and packet redundancy.

The ambient environment sensors consume most of
their battery due to Bluetooth transmissions. To save bat-
tery and to increase the durability of our system, our de-
sign minimizes the transmission duration and frequency
whenever possible. Additionally, transmissions are lim-
ited to small infrequent bursts of data packets to improve
battery life.

Several aspects of our design are parametrized which
makes it easy to extend with new sensors, as well as to
configure the specifications of the existing ones.

The biggest achievement of our design is in its abil-
ity to provide reliable communication using inexpensive
hardware.

2 Design Description

This design consists of three components: sensor nodes
that record ambient environment readings and detect
anomalies, the Facilities Central Server (FCS) which
comprehensively manages sensor data and is an interface
for Facilities, and the mobile application which uses a
mobile device to act as an intermediary for communica-
tion between the FCS and the sensor nodes as well as
provides a user-facing interface to the system. Addition-
ally, the network protocol provides reliable communica-
tion between each of these components.

Sensor nodes are small Bluetooth Low Energy (BLE)
devices deployed all over the campus to monitor the en-
vironment. Each sensor takes environment readings pe-
riodically and stores them locally. Based on its config-
uration, each node implements rules to proactively clas-
sify readings as anomalous or not. Sensor readings are
transmitted using Bluetooth to nearby mobile devices
and then forwarded to the FCS.

The FCS is managed by the MIT Department of Facil-
ities. It is responsible for maintaining and reporting his-
torical records of all sensor readings. It also provides an
interface for remote configuration of sensors and alerts
Facilities of any anomalous readings.

The mobile application acts as an access point for data
transmission between the FCS and sensors. Addition-
ally, it also provides an interface for members of the MIT
community to query sensor data and report problems to
Facilities.

The network protocol establishes communication
among the three modules of our system. It uses packet
replication and acknowledgements to ensure reliable
transmission.

2.1 Sensor Nodes

A sensor node is a small BLE device used to monitor
buildings on campus. These sensors may be used to

S
E

N
S

O
R

-I
D

BUILDING-NUMBER Major 10 bits

FLOOR-NUMBER Major 6 bit

ROOM-NUMBER Minor 7 bit

SENSOR-TYPE Minor 3 bit

COLLISION-ID Minor 6 bit

Figure 1: Schema for Sensor-ID

record temperature, humidity, light intensity, vibrations
and detect water leaks, smoke, carbon monoxide, etc.

The sensor node includes a programmable general-
purpose processor, memory (64 KB RAM and 64 KB
ROM), flash storage (8MB), a real-time clock, a low-
power radio for communication, and the sensor itself.

Sensor nodes collect ambient readings, detect whether
they are anomalous, and transmit them to the FCS via
nearby mobile devices.

2.1.1 Identification

Sensor nodes are BLE devices and must have a form of
identification to be used in BLE advertisement messages.

A BLE advertisement includes a 16-bit major ID, a
16-bit minor ID and a 128-bit region identifier. When a
sensor node is initialized, a technician manually assigns
a major and minor ID. No two sensors can have the same
combination of these ID’s. We define the SENSOR-ID
(Figure 1) to be the concatenation of a sensor’s major
and minor IDs. The SENSOR-ID corresponds to the sen-
sor location and is determined by Facilities prior to de-
ployment.

BUILDING-NUMBER This is a 10-bit identifier as-
signed according to a pre-configured mapping of build-
ings on campus to unique numbers. Each campus has the
freedom to establish the most appropriate mapping.

FLOOR-NUMBER This is a 6-bit signed integer cor-
responding to the floor in which the sensor is installed.

ROOM-NUMBER This is a 7-bit integer representing
the room whose door is closest to the sensor’s location.

SENSOR-TYPE This is a 3-bit identifier that maps
each sensor to a type. If there are more than 7 (23− 1)
types, the less commonly used types are assigned a spe-
cial value 0 to indicate miscellaneous type.

COLLISION-ID This is a 6-bit unique identifier used
to distinguish sensors that have the same location and are
of the same type.

Each sensor is also configured with two
system-wide shared region identifiers:
REQUEST-TO-TRANSMIT-REGION-ID and
IDLE-REGION-ID. See Section 2.4.1 for more de-
tails.

2.1.2 Anomaly Detection

The sensor node is responsible for detecting anomalies in
the environment. Each reading is classified as anomalous
or not based on the sensor’s configured thresholds.

Upon detecting an anomaly, the sensor attempts to
communicate the event to the FCS using the network pro-
tocol described in Section 2.4.

2.1.3 Local Storage

Each sensor has a 64 KB ROM, which will be used to
store a 8-bit Cyclic Redundancy Check (CRC-8) calcu-
lator program and the sensor’s software.

The sensor also has a 8MB flash storage, which is
used to store the configuration parameters of the sensor.
Therefore, in case of a power cycle, it doesn’t need to be
reconfigured.

In order to support fast random access, readings in a
sensor node are stored in RAM with a custom data struc-
ture, referred to as an ALL Tree. Figure 2 and the follow-
ing paragraphs describe the structure of an ALL Tree.
See Section 5.1 for a sample C implementation.

Level 1 The first level of the ALL Tree has 2 nodes
which partitions the readings based on the anomalous bit.

Level 2 In the second level, readings are organized
according to the most significant 21 bits of their times-
tamps (in minutes). Each node in this level has at most 6
children, where each child corresponds to approximately
1.5 days’ worth of data.

Level 3 Each node in the second level points to an
array of size 211 elements indexed by the least significant
11 bits of the timestamp. Values of the array are the 16-
bit readings corresponding to that timestamp.

The ALL Tree data structure provides the following
operations:

ALL-GET-LATEST-READING Returns the times-
tamp, the value and the anomaly bit of the latest recorded
reading.

2

Figure 2: Graph Representation of an ALL Tree

ALL-DELETE-READING Takes a timestamp as in-
put and deletes the associated reading.

ALL-APPEND-READING Appends a new reading
to the ALL Tree maintaining the invariants of the data
structure.

ALL-WALK Performs a in-order walk through the
ALL Tree starting from the most recent to least recent
anomalous reading, and then the normal readings.

In order to prevent a large backlog of readings, the ALL
Tree also limits the amount of data stored in a sensor.
Readings older than 7 days are relatively useless and
are deleted from memory in order to increase the per-
formance of the system. Section 3.1.3 analyses the local
storage of the sensor.

2.1.4 Data Recording and Transmission

Each sensor records readings once every minute, broad-
casts Bluetooth advertisements continuously, and con-
nects to mobile devices periodically.

The frequency at which a sensor takes readings was
decided based on the assumption that readings don’t
vary significantly between one-minute periods. This low
recording frequency makes our readings sparsely dis-
tributed, but considerably reduces the storage complex-
ity.

Readings are not deleted unless the sensor receives an
acknowledgement from the FCS (See Section 2.4.3) or
if it is beyond its storage threshold. Recording readings
once every minute creates a considerably small backlog
of readings in the storage. This decreases the connec-
tion time between sensor nodes and mobile devices. This
also preserves the sensor nodes’ battery life and thus in-
creases the overall system performance.

Bluetooth advertisements don’t consume a lot of
power. However, actual Bluetooth connections have a
significant power consumption. Because of this, the sen-
sor node advertises continuously but establish connec-
tions periodically. See Section 3.3.1 for an analysis of
battery-life.

As mentioned in Section 2.1.1, each sensor node is
configured with two system-wide region identifiers. The
sensor node chooses which region identifier to use in its
advertisements depending on its willingness to transmit
data. Each sensor attempts to establish one connection
every 5 minutes. See Section 2.4.1 for details.

2.1.5 Configurability

Several parameters in the sensor nodes can be remotely
configured by the FCS. Some parameters include thresh-
old for anomalous data, frequency of transmissions, in-
tervals for timeouts, etc.

Every time a connection to a mobile device is success-
ful, the mobile device forwards configuration informa-
tion to the sensor. Section 2.4.3 describes the communi-
cation involved in changing configurations. Upon receiv-

3

ing these packets, the sensor node re-configures itself and
records the new parameters in its flash storage.

2.2 Facilities Central Server

The FCS maintains a historical record of all sensor read-
ings, can be queried for data analysis with secure authen-
tication for sensitive data, provides an interface for re-
mote configuration of sensors, and reports anomalies.

2.2.1 Sensor Reading Database

The FCS stores all received sensor readings in a SQL
database named Records-Table. Figure 3 describe the
schema for this table. The records table has columns
for the sensor READINGs, a TIMESTAMP (minutes since
UNIX epoch), a hierarchical SENSOR-ID (BUILDING-
NUMBER → FLOOR-NUMBER → ROOM-NUMBER →
SENSOR-TYPE → COLLISION-ID, all concatenated),
and a IS-ANOMALY bit. The table is indexed by TIMES-
TAMP, SENSOR-ID, and IS-ANOMALY to allow fast
searches on these fields.

The TIMESTAMP and the SENSOR-ID together form
the primary key for rows in the database.

TIMESTAMP 32 bits

SENSOR-ID 32 bits

READING 32 bits

IS-ANOMALY 1 bit

Figure 3: Schema for Records-Table

2.2.2 Receiving Sensor Readings

The FCS provides an HTTP endpoint at /report which
receives sensor readings from mobile applications.
It takes POST parameters sensor id, timestamp,
reading, and is anomaly. It then executes the follow-
ing SQL query on Records-Table using escaped pa-
rameters:

INSERT INTO Records -Table
VALUES (timestamp, sensor id, reading, is anomaly);

Additionally, the FCS keeps a Report-Log which is a
log of received readings and the IP address of the router
that the mobile device was connected to, obtained via
traceroute or similar methods.

2.2.3 Handling Queries

The FCS handles queries for records via an HTTP end-
point at /query that uses MIT certificates for authenti-
cation. This endpoint listens for GET requests with the
parameter q for a SQL query.

We allow various subset of queries to be performed on
Records-Table based on the authentication of a partic-
ular user. For data analysis and data aggregation, we use
the functions already provided by SQL such as SUM, AVG,
and COUNT. To ensure that our response is limited, pagi-
nation (using SQL LIMIT clause) is used to only allow a
small constant number (e.g. 25) of returned results.

2.2.4 Sensor node Information

The FCS is responsible for storing information regarding
sensor nodes. The technician that installs a sensor node
must store the ROUTER-IP of the closest router to that
sensor node and an AFS-GROUP if applicable to limit
access to sensor readings based on user authentication.

This information storage is implemented within the
file system in a particular directory called the Sensor
Node Directory. In this directory, there are 216 sub-
directories named from 0X0000 to 0XFFFF correspond-
ing to the most significant 16 bits of SENSOR-ID. Within
each of these sub-directories are 216 sensor node infor-
mation files corresponding to the least significant 16 bits
of SENSOR-ID.

Each sensor node information file is a dictionary con-
taining possibly multiple entries for ROUTER-IP and
AFS-GROUP. See Figure 4 below for an example of one
of these files.

Router -IP: 18.9.22.69

AFS -Group: 6.033- students

AFS -Group: 6.033- staff

Figure 4: Sensor Node Information File

2.2.5 Remote Configuration of Sensor Nodes

The FCS hosts a secure website at the /fcs/ endpoint for
the Facilities to remotely configure sensor nodes. This
website allows the Facilities to choose specific sensor
nodes and request configuration changes to them. They
can also use wild card selections for sensors if some con-
figuration change needs to be made to several sensors at
once. This request, appended with a unique CONFIG-
SEQUENCE-NUMBER, is forwarded to the sensor us-
ing the Network Protocol (Section 2.4.3). The sequence
number helps us keep track of acknowledgements from
the sensors.

4

Each configuration message needs to be acknowl-
edged at /fcs/ack endpoint. The acknowledgement con-
tains the CONFIG-SEQUENCE-NUMBER. If no acknowl-
edgement has been received by the FCS after a config-
ured timeout, it re-sends that configuration message.

2.2.6 Detecting Sensor Node Displacement and Mal-
function

The FCS is responsible for detecting whether sensors are
displaced or are malfunctioning. It runs a nightly batch
job on the Report-Log and does the following three
checks:

1. If a certain number of configuration messages are
sent to a sensor and none of them have been ac-
knowledged, the sensor is either not in its original
position near it’s corresponding ROUTER-IP or it is
malfunctioning.

2. If a majority of readings received from a sensor
did not originate from mobile devices connected
through the corresponding ROUTER-IP from the
Sensor Node Directory, the sensor has mostly likely
been displaced.

3. If no readings have been received from some sensor
for a long period of time, it is most likely malfunc-
tioning.

Upon completion of this batch, we notify the Facili-
ties with the SENSOR-ID’s of these possibly displaced or
malfunctioning sensors. We also include the IP address
of the most common router IP address for a displaced
sensor, so that the Facilities can locate this sensor.

2.2.7 Anomaly Notification

The sensors are responsible for detecting if any parame-
ter of the environment is anomalous. When an anomaly
record is received, the reading is forwarded in an alert to
a configurable set of email addresses and phone numbers
for Facilities.

2.2.8 Mobile Network

The FCS uses mobile devices to communicate with sen-
sor nodes. To facilitate this communication, the FCS
must be able to select a mobile device given a ROUTER-
IP. (See Sections 2.4.2 and 2.4.3) The FCS receives
heartbeat messages from the mobile devices and stores
their IP addresses in a map from ROUTER-IP to IP ad-
dresses. After a pre-configured timeout, if the FCS
hasn’t heard from some IP address, then that address gets
deleted from this map.

Figure 5: Sample Mobile Application User Interface

2.3 Mobile Application

MIT has an existing MIT Mobile App for Android [1]
and iOS [2]. This design proposes an extension to the app
due to its prevalence in the MIT community and because
it already includes methods of Kerberos authentication
and filing reports to Facilities.

The app allows the user to make data queries to the
FCS and to manually send environmental reports to Fa-
cilities. Data analysis reports can be displayed in form
of tables or graphically such as with heat-maps. The app
allows the user to filter readings based on sensor location
as well as a time interval, as described earlier in Sec-
tion 2.2.3. Figure 5 shows a sample user interface which
could be used.

The app also acts as an intermediary for
communication between FCS and the sen-
sor. The app registers two BLE region iden-
tifiers, REQUEST-TO-TRANSMIT-REGION-ID and
IDLE-REGION-ID. The mobile device is configured
to wake up upon receiving BLE advertisements with
the REQUEST-TO-TRANSMIT-REGION-ID region iden-

5

tifier. When the mobile device receives readings or
configuration acknowledgements from a sensor nodes,
it is stored locally on the device until it can be sent to
the FCS. The mobile device also stores configuration
messages sent by the FCS to sensor nodes until it is able
to successfully transmit configuration messages to their
corresponding sensor node destinations. The following
sections describe the details on how this communication
is achieved.

2.4 Network Protocol
The primary purpose of the network protocol is to pro-
vide reliable communication between the FCS and the
sensors over less reliable systems such as Bluetooth and
the Internet. We chose reliability as our priority because
we recognized that loss of sensor readings corresponds
to loss of anomaly alerts, which is undesirable for this
system.

The network protocol consists of two major compo-
nents: the Bluetooth Protocol which is used for com-
munication between the mobile device and the sensor
nodes, and the Web Protocol which is used for commu-
nication between the FCS and the mobile device. The
network protocol also specifies how the dissociated parts
of the system, the FCS and the sensor, communicate with
each other via an end-to-end interface implemented us-
ing these two components.

2.4.1 Bluetooth Protocol

The Bluetooth protocol is used for communication be-
tween the mobile device and the sensor. It is a best-
effort transmission protocol and does not use acknowl-
edgments after packet delivery. The protocol is made up
of three components: the packet structure, the transmis-
sion scheme, and integrity checking.

Packet Structure Transmissions over Bluetooth are
divided into packets. There are four types of packets,
as specified in Figure 6.

MOBILE-HELLO This is the initial packet sent by the
mobile device to the sensor when a connection is suc-
cessfully established. It is used to synchronize the sen-
sor node’s clock and to send configuration updates to the
sensor node. The sensor node starts sending readings to
the mobile device only after receiving this packet.

MOBILE-ACK These packets contain FCS-
administered acknowledgements of received readings
from the sensor node. The mobile devices sends these
packets to their corresponding sensor nodes.

SENSOR-DATA These packets send readings from
sensor nodes to mobile devices. If the mobile applica-
tion requested the latest reading, it only responds back
with the latest recorded reading.

SENSOR-CONFIG-ACK This packet is used to ac-
knowledge configuration messages sent by the FCS.

The 96-bit CONFIGURATION value used in the
MOBILE-HELLO packet is simply a concatenation of
CONFIG-SEQUENCE-NUMBER, CONFIG-KEY, and
CONFIG-VALUE, each of which are 32 bits.

Transmission Scheme Bluetooth connections are al-
ways initiated by the mobile device. A sensor is pre-
configured with two BLE region identifiers:

REQUEST-TO-TRANSMIT-REGION-ID This region
identifier signals that the sensor is willing to send its
stored readings and is requesting any available mobile
device to connect to it. The sensor also uses this region
identifier if it has detected an anomalous reading to
ensure swift communication of such time-sensitive
readings. After closing a connection while configured to
this region ID, the sensor node will switch to using the
IDLE-REGION-ID. Sensor nodes switches to this region
ID every 5 minutes to indicate that it wants to transmit.

IDLE-REGION-ID This region ID signals that a
mobile device should connect to it only if it wishes to
retrieve the latest sensor reading or to send a configura-
tion message. A sensor using this region ID is not yet
willing to transmit all of its readings.

The mobile device is configured to wake the appli-
cation when it receives a BLE advertisement with the
REQUEST-TO-TRANSMIT-REGION-ID region identifier.
The mobile application then tries to connect to the sen-
sor node. Upon a successful connection, it sends a
MOBILE-HELLO packet to the sensor node.

The sensor, upon receiving the MOBILE-HELLO packet,
does the following. It first synchronizes its clock to
the timestamp received in this packet so future read-
ings will be more accurate. If the sensor was broad-
casting REQUEST-TO-TRANSMIT-REGION-ID and the
REQUEST-LATEST-READING bit was 0, then it does a
in-order traversal of the stored readings by calling ALL-
WALK on the ALL Tree and sends the readings us-
ing SENSOR-DATA packets. However, if the REQUEST-
LATEST-READING bit was 1, then the sensor gets the
latest reading by calling ALL-GET-LATEST-READING
and sends a single SENSOR-DATA packet to the mobile
phone.

6

MOBILE-HELLO TIMESTAMP [32 bits] REQUEST-LATEST-READING [1 bit] CONFIGURATION [96 bits]

MOBILE-ACK TIMESTAMP [32 bits]

SENSOR-DATA TIMESTAMP [32 bits] READING [16 bits]

SENSOR-CONFIG-ACK CONFIG-SEQUENCE-NUMBER [32 bits]

Figure 6: Bluetooth Packet Structure

The mobile device may also have queued acknowl-
edgements from the FCS for that sensor. These ac-
knowledgements are transmitted from the mobile phone
in MOBILE-ACK packets to the sensor and then deleted
from its local storage.

The mobile device may send a configuration message
in the MOBILE-HELLO packet. This update is acknowl-
edged by the sensor using the SENSOR-CONFIG-ACK

packet.

Integrity Checking The Bluetooth packet transmis-
sion is not reliable. It has a Bit Error Rate (BER) of
0.1% [3]. To check for transmission errors, every packet
has a 9-bit Cyclic Redundancy Check-8 (CRC-8). This
is calculated using a CRC-8 calculator before transmis-
sion at the source and verified at the destination. If the
calculated CRC doesn’t match the one in the packet, then
the destination infers that the packet was corrupted and
disregards it. Because sensor nodes send all of their read-
ings when they connect, the corrupted packet will even-
tually be retransmitted without corruption. Thus, ignor-
ing the lost packet does not cause a major performance
impact, but instead reduces the complexity of our design.

Another aspect of this which we need to take care of
is not to keep our Bluetooth channel open for too long.
One way to prevent a long connection is to implement
a hard configurable timeout on Bluetooth connections.
Any connection which lasts longer than this timeout is
closed by the sensor node. This helps preserving the bat-
tery life in case some mobile device misbehaves.

2.4.2 Web Protocol

The FCS and the mobile application communicate over
the Internet. We use the HTTP protocol [4] which uses
the TCP/IP protocol. TCP/IP is an existing protocol used
on the Internet which guarantees reliable, in-order de-
livery of data packets. HTTP is a layer over TCP/IP
which specifies a client-server model of communication
between two devices. Both the FCS and the mobile de-
vice act as a client and server for the HTTP protocol.

FCS — Server The FCS listens on port 6144 for in-
coming HTTP requests from mobile devices. The FCS
provides the following endpoints:

/fcs/ This is a Web User Interface for the MIT De-
partment of Facilities to view and analyse data, as well
as to configure the sensors. This endpoint is secured by
MIT certificates and is only accessible to MIT Facilities.

/fcs/report This endpoint receives sensor read-
ings. It listens for a POST request with parameters
timestamp, sensor id, reading, and is anomaly.
See Section 2.2.2 for more.

/fcs/query This endpoint takes sensor reading
queries. It listens for a GET request with an MIT Certifi-
cate and parameter q, a SQL query for Records-Table.
The response is of the same format as the SQL query
output. See Section 2.2.3 for more.

/fcs/ack This endpoint receives configuration ac-
knowledgements from sensor nodes via mobile de-
vices. It listens for a POST request with param-
eters sensor id, config key, config value, and
timestamp. See Section 2.2.5 for more.

/fcs/mobile-heartbeat This endpoint receives heart-
beat messages from mobile devices. It listens for POST
requests with a router ip parameter. See Section 2.2.8
for more.

Mobile Application — Client The mobile applica-
tion will relay sensor readings to the FCS. It will also
query the FCS for sensor readings if the user makes a
request, post configuration acknowledgements from sen-
sor nodes, as well as send heartbeats periodically every 3
minutes. The application connects to the FCS on port
1644 using the endpoints /fcs/report, /fcs/query, and
/fcs/ack, and /fcs/mobile-heartbeat to accomplish each
of these tasks respectively.

7

FCS — Client The FCS also acts an HTTP client for
the mobile application server. Upon receiving a sensor
reading, the FCS needs to respond to the mobile appli-
cation with an acknowledgement. Additionally, any con-
figuration messages will also need to be relayed to the
sensors. As will be explained in the next section, the
FCS will use location-based routers as a means to find a
mobile application server.

Mobile Application — Server The mobile application
in every mobile device acts as a HTTP server and listens
on port 6145. This server is meant to receive requests
from the FCS about sensor data acknowledgements and
configuration changes. This server provides the follow-
ing endpoints:

/mobile/ack This endpoints listens for a POST re-
quest with parameters sensor id and timestamp. The
FCS sends a request to this endpoint to signify an ac-
knowledgement for a sensor data reading.

/mobile/config This endpoints is used to make con-
figuration changes to the sensors. It listens for POST
request with parameters sensor id, key, and value

which signifies a key-value pair to be configure on the
given sensor.

2.4.3 End-to-End Data Transmission

Both the Bluetooth protocol and the Web protocol work
together with mobile devices as a medium to achieve
communication between the FCS and the sensor.

Sensor to FCS A transmission from a sensor node to
the FCS works in the following way. Upon connecting
to a mobile device, the sensor sends all its data readings
and any configuration acknowledgements to a mobile de-
vice using the Bluetooth Protocol (Section 2.4.1). The
mobile device stores these messages in its local storage
until it has an Internet connection. Once the mobile is on-
line, the mobile application uses the Web Protocol (Sec-
tion 2.4.2) to send the messages to the FCS. The mobile
phone then deletes these stored messages after posting
the message to the FCS and receiving the appropriate
HTTP response, confirming that the FCS has success-
fully and reliably received the message.

FCS to Sensor The FCS needs to transmit reading ac-
knowledgements and configuration messages to the sen-
sor nodes. To send these messages to a sensor node,
the FCS first needs to know what mobile device to send
the request to. It uses the Sensor Node Directory to get

a ROUTER-IP (or many of these addresses, if the sen-
sor node information file has multiple entries) given the
SENSOR-ID. The IP address corresponds to the nearest
router to a sensor node. The FCS searches for a mobile
device connected through this router via the mobile ap-
plication and forwards all requests to that mobile device.

The mobile device, upon receiving this request, tries to
deliver it to the sensor. In order to increase the chances
of delivery, we do the following. The mobile device
broadcasts this request to the broadcast IP address of the
router. All the devices connected to that routers will re-
spond back and the request will be forwarded to all of
these devices. Then, if any mobile device among those
happen to connect to the sensor, that device will forward
the transmission to it.

If the request was for a configuration update, the sen-
sor acknowledges back a SENSOR-CONFIG-ACK packet
which gets forwarded to the FCS using the previously
described route.

3 Analysis

3.1 Scalability
3.1.1 Campus size

Our choice of encoding the location of a sensor in the
major and minor ID limits the size of the campus our
system can be deployed to.

As described in Section 2.1.1, our system can sup-
port up to 1024 distinct buildings, 64 floor levels and
128 room numbers. Further, it can support 512 sensor
nodes, or up to 64 sensors nodes of the same type, around
any single location, to the nearest room. Therefore, even
though limited, our system can still be used in a very
large campus.

3.1.2 Adding New Sensors

Adding a new sensor to our system is very simple. We
only need to deploy the sensor, configure it with a new
SENSOR-ID and add this entry to the Sensor Node Di-
rectory. The new sensor will then start recording data
immediately and become a part of our system.

3.1.3 Sensor Node Storage

To improve performance and to provide fast random ac-
cess to readings, the system store sensor readings in a
special data structure called the ALL Tree that resides in
the sensor’s 64KB RAM.

Because we record readings every minute, the read-
ings’ timestamps are stored as minutes since UNIX epoch
[5], so the lower 11 bits of the timestamp correspond to
211 = 2048 min = 1.42 days worth of data. Because we

8

disregard data older than 7 days, the second level of the
stored ALL Tree will have at most 7

1.42 = 4.6 < 6 nodes
(see Figure 2). That way, the maximum amount of data
used for storing readings in the ALL Tree is

2 ·6 ·2048 ·16 = 393216 bits = 48 KB,

which is less than the size of sensor’s RAM.
Since we have very limited memory after allocating

the ALL Tree, changing certain parameters in the system
may mean that we can no longer store the readings in the
memory. For example, changing the size of the readings
to a larger value, increasing the frequency with which
readings are taken, and so on may lead to problems with
this in-memory storage.

However, an in-memory storage provides the advan-
tage of fast random access to sensor readings indexed
by timestamp which considerably increases the perfor-
mance of our system by decreasing the connection time
between sensors and mobile devices.

3.1.4 Large Influx of Users

The choice to have two different region identifiers, al-
lows our design to behave well even with a large number
of mobile devices in the vicinity of a sensor.

A mobile phone connects to a sensor if it sees a
REQUEST-TO-TRANSMIT-REGION-ID region identifier.
The sensor only sets this region identifier if it wants to
connect. Therefore, the number of connections made is
controlled by the sensor as opposed to the mobile devices
and thus, the connection time is not affected by the num-
ber of nearby mobile devices.

3.1.5 Mobile Device Intermediary

One of the main characteristics of our design is replac-
ing expensive Bluetooth access points by personal mo-
bile devices. This greatly decreases the cost of our sys-
tem and makes its deployment financially feasible, while
still maintaining a reliable data transmission between the
sensors and the FCS.

3.2 Reliability
3.2.1 Loss Rate of Sensor Readings

The communication between sensor nodes and the FCS
is designed to minimize data loss.

Ideally, a mobile device is always connected to the In-
ternet. However, it is possible for a mobile device to store
sensor data and to never transmit it to the FCS because it
was never able to connect to the Internet.

Due to the system of acknowledgements, even if some
data packet failed to deliver, it will be retransmitted by
the sensor node to some other device.

A data packet is transmitted to multiple devices, which
gets stored in that device until the packet expires. So, in
order to transmit the packet, we only need one of these
devices to be connected to the Internet before the packet
expires. This greatly increases our chances of delivering
a packet to the FCS.

This use of end-to-end acknowledgements and packet
redundancy greatly increases the reliability of the system
so, the chances of an actual data loss occurring is very
low.

3.2.2 Anomaly Report

Anomaly report is a key feature of our system and our
design attempts to alert about these events as soon as pos-
sible. Upon detecting anomalies, the sensor immediately
switches to using REQUEST-TO-TRANSMIT-REGION-ID.
This signals nearby mobile devices to connect to the sen-
sor if possible and get sensor readings. Therefore, ideally
an anomalous reading should be immediately transmitted
to the FCS. However, we cannot assume that every mo-
bile device is connected to the Internet.

Assuming that 50% of the devices are not connected
to the Internet, the expected number of times you need to
connected to a mobile device in order to reach a device
that is connected to the Internet is 2. Since the interval
between connections is 5 minutes, the expected latency
time for an anomalous reading is 5 minutes.

3.3 Durability
3.3.1 Sensor Node Battery Life

Throughout our design, decisions such as the frequency
and timeout for connections were made with the sensor’s
battery life in mind. We optimized several parameters of
our system in order to achieve reliable communication
while allowing sensor’s to last more than 4 years.

We will assume that the probability of a sent sensor
reading being acknowledged back to the sensor is 1%.
This is estimate is used to find out the expected number
of re-transmissions required per data packet.

The 1% probability of acknowledgement implies that
the expected number of times we need to resend a sensor
reading until it finally gets acknowledged is 100.

The sensor record new readings once per minute and
connect at most once every 5 minutes. Therefore, the
expected number of readings stored in a sensor will be
1 ·5 ·100 = 500.

Since each reading corresponds to a 74-bit data packet
and in every connection the sensor attempts to send all
its data, the expected amount of data sent per connection
is 74· 500 = 37000 bits = 4.52 kbytes.

Considering the 4kbytes/s BLE transmission rate and
the 2 additional seconds it takes to establish a connection,

9

the expected duration of each sensor connection will be
2+ 4.52

4 = 3.13 seconds.
The sensor nodes draws 1mA during data transmis-

sion. So, in 4 years, having a connection interval of 5
minutes, will perform at most 4·365·24·60

5 = 420480 con-
nections. So, the expected battery usage for transmis-
sion will be 1 ·420480 ·3.13= 1316102.4 mA.s = 365.58
mA.h.

The sensor also consumes energy to broadcast adver-
tisements. Broadcasting at 1Hz, the average current draw
is 0.025mA over an entire second. Since we advertise
continuously, the total battery usage in a 4 year period is
0.025 ·4 ·365 ·24 = 876 mA.h.

Therefore, over a period of 4 years, the expected bat-
tery usage of a sensor node is 876+ 365.58 = 1241.58.
Since each sensor node has a 1600mA.h battery, the av-
erage lifetime of our sensor is 1600

1241.58 ·4 = 5.15 years.

3.3.2 Handling Malicious Behavior

Our system is capable of defending itself against some
types of malicious behavior.

For example, if a mobile device misbehaves and slows
down a Bluetooth connection with a sensor, this may
cause a huge batter drain in the sensor. However, our de-
sign protects against such actions by doing the following:
the sensor node will still connect to a faulty device, but it
will only remain connected for a limited period of time,
as described in Section 2.4.1. By default the Bluetooth
connection timeout is set to be 5 seconds. By performing
calculations similar to the ones in the above section, we
came to the conclusion that such timeout asserts a battery
life of at least 4.38 years.

3.3.3 Effects of hardware upgrades

Hardware upgrades will most of the times increase the
performance of our system. For example, faster Blue-
tooth connections will decrease the connection time, de-
creasing latency and saving battery life. However, if a
sensor increases its readings precision and starts storing
32-bit reading values, this might jeopardized the local
storage of the sensor. Yet, if this is accompanied by an
increase in the size of the sensor’s RAM, our system will
remain unaffected.

A drastic hardware upgrade such as MIT not using
routers through out its campus anymore might render
our system unusable, but we assume that this is not very
likely to happen in the nearby future.

3.4 Configurability
One of the requirements on our system is that it must
be configurable. Any changes in the parameters of the

sensors must be easy to perform. Our design makes
it possible to configure several parameters of the sen-
sor. The MIT Facilities staff can login to the web in-
terface and specify the configuration changes they wish
to make. Our network protocol is then used to transmit
these changes to the sensor.

3.5 Fault Tolerance
3.5.1 Hardware Failures

There are several ways the hardware could fail and our
system needs to be able to tolerate it. It is possible for our
sensor node to undergo a power cycle. This is a problem
for our system because we store the readings in volatile
memory and hence are erased upon restart. However,
since we store the configuration parameters in the flash
storage, the sensor could use these saved parameters and
become functional immediately.

Our system also is capable of addressing sensor node
failure and displacement (see Section 2.2.6).

3.5.2 Network Failures

Network failures can happen frequently and our design
is able to handle them properly. We need to mainly deal
with two types of failures: packet corruption and loss. To
mitigate these, we make use of TCP/IP which itself guar-
antees reliability and CRC-8 checksum in the Bluetooth
transmission to check for corrupt packets.

Our system is also able to deal with short network
shortages. If the Wi-Fi does down in a certain location
on campus, mobile phones in that vicinity won’t be able
to communicate with the FCS. However, they will still
gather sensor data and retain it in memory until it time-
outs. That way, if the device moves to a region with Wi-
Fi coverage, it will transmit data from sensors that are
not in Wi-Fi zone.

3.6 Use Cases
3.6.1 Archiving

The database in the FCS is an archive all the sensor read-
ings. Each sensor reading from all the sensor is stored in
the FCS and can be queried and analyzed anytime from
the mobile application or from the FCS web interface
available for the MIT Facilities.

3.6.2 Anomaly detection

Our system can detect anomalous sensor data by using
simple rules such as a threshold for the sensor reading.
If the sensor flag a reading as anomalous, it tries its best
to send to notify the FCS about it. See Section 3.2.2 for
more details.

10

3.6.3 User reports of issues

The MIT Mobile app has the basic infrastructure for con-
tacting Facilities to report on-campus maintenance task.
We augment this infrastructure with additional fields rel-
evant to our system.

Users can use the app to report problems with the sen-
sor, as well as can notify the Facilities themselves if there
is a maintenance issue such as leaks or lighting.

3.6.4 User retrieval of archived information

Each sensor is mapped to an AFS-GROUP-IDENTIFIER.
A user can use the mobile application to query and an-
alyze the sensor data. Only a user who is a member of
an AFS Group with this identifier will have access to the
readings for this sensor. See Section 2.3 for more details.

4 Conclusion

This report proposes a design for a low-cost, reliable,
durable, and configurable campus-wide ambient environ-
ment sensing system. The system provides an interface
with the mobile application, allowing users to query sen-
sor information for any MIT building, floor, or room. En-
vironmental anomalies are also detected and reported to
Facilities to resolve the issue.

We started by replacing the expensive parts of the
most common environment sensing solution with per-
sonal mobile devices, which introduced additional chal-
lenges to communication that lead to the construction of
a reliable network protocol for communication between
the modules of our system. We designed our system to
achieve all the important tasks any environment sensing
system needs: sensing and storing ambient readings, and
notifying relevant parties of any anomalous readings in
the environment.

In this way, our design makes it feasible to deploy a
campus wide ambient environment sensing system using
mobile devices.

5 Appendix

5.1 ALL Tree
For storing readings in sensors, this is the implementa-
tion our data structure, the ALL Tree.

1 #include <stdlib.h>
2 #include <stdint.h>
3 #include <time.h>
4

5 extern void ALL_walk_func(ALL_reading reading);
6

7 typedef struct {
8 ALL_node* anom;
9 ALL_node* nonanom;

10 } ALL_tree;

11

12 typedef struct {
13 int start_offset; // reading [0] shares these

first 21 bits of timestamp
14 uint16_t* readings [6]; // about 8 days , where

readings[i] is an array of size 2^11 (4KB)
15 } ALL_node;
16

17 typedef struct {
18 bool anomalous;
19 int timestamp;
20 uint16_t reading;
21 } ALL_reading;
22

23 int minute_time () {
24 time_t clk = time(NULL);
25 return ((int)clk) / 60;
26 }
27

28 uint16_t* new_readings () {
29 // array of size 2^11 filled with 1 bits (-1

values).
30 return (uint16_t)memset(malloc(1<<11, sizeof(

uint16_t)), -1, 1<<11);
31 }
32

33 ALL_tree* ALL_initialize () {
34 ALL_tree* root;
35 ALL_node* anomalous , nonanomalous;
36 root = (ALL_tree *) malloc(sizeof(ALL_tree));
37 anom = (ALL_node *) malloc(sizeof(ALL_node));
38 nonanom = (ALL_node *) malloc(sizeof(ALL_node));
39 root ->anom = anom;
40 root ->nonanom = nonanom;
41 int time = minute_time ();
42 anom ->start_offset = time;
43 nonanom ->start_offset = time;
44 }
45

46 int ALL_append_reading(ALL_tree* root , ALL_reading
item) {

47 int upper ,lower;
48 ALL_node* node;
49 uint16_t* readings;
50 node = item ->anomalous? root ->anom : root ->

nonanom;
51 upper = item ->timestamp - node ->start_offset

>> (32 -21);
52 lower = item ->timestamp & ((1<<12) -1);
53 if (upper < 0) return 1;
54 while (upper > 6) {
55 free(node ->readings [0]);
56 node ->readings [0] = node ->readings [1];
57 node ->readings [1] = node ->readings [2];
58 node ->readings [2] = node ->readings [3];
59 node ->readings [3] = node ->readings [4];
60 node ->readings [4] = node ->readings [5];
61 node ->readings [5] = new_readings ();
62 upper --;
63 }
64 readings = node ->readings[upper];
65 if (! readings) node ->readings[upper] =

new_readings ();
66 readings[lower] = item ->reading;
67 return 0;
68 }
69

70 int ALL_delete_reading(ALL_tree* root , int
timestamp) {

71 ALL_node* node;
72 int upper ,lower;
73 uint16_t* readings;
74 node = root ->nonanom;
75 for (a=0; a<2; a++) { // once for anom , once

for nonanom
76 upper = timestamp - node ->start_offset >>

(32 -21);
77 lower = timestamp & ((1<<12) -1);
78 if (upper < 0 || upper > 5) return -1;
79 readings = node ->readings[upper];
80 if (! readings) continue;

11

81 if (readings[lower] != -1) {
82 readings[lower] = -1;
83 return 0; // deletes nonanom before

anom if timestamp collision
84 }
85 node = root ->anom;
86 }
87 return 1;
88 }
89

90 ALL_reading ALL_get_latest_readings(ALL_tree* root
) {

91 ALL_node* node;
92 uint16_t* readings;
93 uint16_t reading;
94 int timestamp;
95 node = root ->anom;
96 int a;
97 for (a=0; a<2; a++) { // once for anom , once

for nonanom
98 timestamp = node ->start_offset;
99 int u;

100 for (u=5; u>=0; u--) {
101 readings = node ->readings[i];
102 if (! readings) continue;
103 for (l=(1<<11) -1; l>=0; l--) {
104 reading = *(readings ++);
105 if (reading != -1) return (

ALL_reading){
106 .anomalous = !a,
107 .timestamp = timestamp+l,
108 .reading = reading
109 };
110 }
111 timestamp += 1<<12;
112 }
113 node = root ->nonanom;
114 }
115 }
116

117 void ALL_walk(ALL_tree* root) {
118 ALL_node* node;
119 uint16_t* readings;
120 uint16_t reading;
121 int timestamp;
122 node = root ->anom;
123 int a;
124 for (a=0; a<2; a++) { // once for anom , once

for nonanom
125 timestamp = node ->start_offset;
126 int u;
127 for (u=5; u>=0; u--) {
128 readings = node ->readings[i];
129 if (! readings) continue;
130 for (l=(1<<11) -1; l>=0; l--) {
131 reading = *(readings ++);
132 if (reading != -1) {
133 ALL_walk_func ((ALL_reading){
134 .anomalous = !a,
135 .timestamp = timestamp+l,
136 .reading = reading
137 });
138 }
139 }
140 timestamp += 1<<12;
141 }
142 node = root ->nonanom;
143 }
144 }

6 Glossary

Advertisement Messages Periodic messages sent by a
BLE device which lets other BLE devices connect
to it.

ALL Tree An efficient data structure for the storage of
readings within a sensor node. ALL is made of the
initial letters of the given names of the authors of
this paper. See Section 2.1.3 for details, and Section
5.1 for the implementation.

Anomaly A reading taken by a sensor node which,
based on a certain threshold, is considered to be ab-
normal.

BLE A communication technology which uses a low-
power radio with an energy-efficient link-layer pro-
tocol and a low communication range.

Bluetooth Low Energy See BLE

Broadcast IP Address An IP address which exists on
a local network on which if a packet is sent, it gets
broadcasted to all the devices connected in that local
network.

Facilities Central Server See FCS

FCS A central server managed by the MIT Department
of Facilities used to store and query historical sensor
readings and to notify facilities in case of anoma-
lies.

HTTP Also Hypertext Transfer Protocol. A transport
protocol used on the Internet using a client-server
model.

Major ID A 16-bit field in a BLE advertisement.

Minor ID A 16-bit field in a BLE advertisement.

Mobile Application An extension proposed to the MIT
Mobile App to support the ambient sensing system.

Region Identifier A 128-bit field in a BLE advertise-
ment.

Sensor Node small size BLE devices deployed all over
campus used to monitor the ambient environment.

Sensor Node Directory A map of SENSOR-ID to infor-
mation about the sensor.

Sensor Node Information File A file for an individual
sensor node stored on the FCS containing at least
one of the sensor node’s nearest routers’ IP ad-
dresses, as well as any AFS-Groups that correspond
to necessary authorization to view readings for the
sensor node.

TCP Also Transmission Control Protocol. A transport
protocol used on the Internet which guarantees reli-
ability and in-order delivery of packets.

12

Unix Epoch The date-time midnight Thursday, 1 Jan-
uary 1970. A timestamp is measured as number of
seconds elapsed since this date-time.

UUID The unique universal identifier is an identifier
standard in software construction. It’s a 128-bit
value and is deemed “practically unique”.

References

[1] MIT Mobile Android Application, Google Play
Store
https://play.google.com/store/apps/

details?id=edu.mit.mitmobile2

[2] MIT Mobile iOS Application, Apple iTunes
https://itunes.apple.com/us/app/

mit-mobile/id353590319

[3] Bluetooth: Radio Architecture. Bluetooth SIG, Inc.
https://developer.bluetooth.org/

TechnologyOverview/Pages/Radio.aspx

[4] RFC 2616: Hypertext Transfer Protocol – HTTP/1.1.
Network Working Group.
http://tools.ietf.org/html/rfc2616

[5] Unix time
https://en.wikipedia.org/wiki/Unix time

13

