
Concept representation
in a type system

Lucas E. Morales
MIT

Computational Cognitive Science

Learning as Program Induction, CogSci 2018

Concept representation in a type system

Purpose:

• Learning programs ("child coder") is more than writing
procedural code.

Spoken: First, there is more to learning programs than writing procedural code. We will
discuss a more abstract, purely-relational aspect to programming.

Concept representation in a type system

Purpose:

• Learning programs ("child coder") is more than writing
procedural code.

• Use type systems to express meaning, 
à la conceptual role semantics.

Spoken: We will discuss types, which give meaning to procedures at a more abstract
level than concrete code.

Concept representation in a type system

Purpose:

• Learning programs ("child coder") is more than writing
procedural code.

• Use type systems to express meaning, 
à la conceptual role semantics.

• Type systems provide a good representation for a
computational study of concept learning.

Spoken: We will see the ways concept learning manifests in a type system.

Concept representation in a type system

Purpose:

• Learning programs ("child coder") is more than writing
procedural code.

• Use type systems to express meaning, 
à la conceptual role semantics.

• Type systems provide a good representation for a
computational study of concept learning.

Note:

• Technical details ≪ key ideas.
Spoken: There will be technical details that should not discourage you. We are presenting a formal framework
for concept representation, so there is mathematical content that is not essential for high-level understanding.
We will look at code, but I will accompany code with natural description of the idea being demonstrated.

Spoken: Suppose we have balls of various sizes. You can..

Sort

Spoken: ..sort them, like this:

Sort

Spoken: You could also sort:

Sort

Spoken: sized boxes, or

Sort

Spoken: shaded boxes. What does it mean to learn sorting, as a program? It could be
learning concrete code, or it could be learning the abstract definition: a program spec.

On sort
"It takes a set of things which are orderable,
and gives a sequence of those things in order."

Spoken: In words, we might say that it {takes a set of things} {which are orderable} and
{gives a sequence of those things} {in order}. We don't communicate "sort" by giving an
algorithm, but by the defining the type of procedure.

On sort

sort :: Ord T ⇒ (i : [T]) → (v : [T] | elems(i) = elems(v)

∧ nondecreasing(v))type class

constraint

input type

output type

"It takes a set of things which are orderable,
and gives a sequence of those things in order."

Sort as a type

Spoken: This can be expressed by type declaration, which we'll try to make more sense
of it later. But for now believe me that:

• This completely defines sorting.

On sort

sort :: Ord T ⇒ (i : [T]) → (v : [T] | elems(i) = elems(v)

∧ nondecreasing(v))type class

constraint

input type

output type

"It takes a set of things which are orderable,
and gives a sequence of those things in order."

Sort as a type

• This completely defines sorting.

• It does not matter what we are sorting, 
as long as the items have an ordering.

On sort

sort :: Ord T ⇒ (i : [T]) → (v : [T] | elems(i) = elems(v)

∧ nondecreasing(v))type class

constraint

input type

output type

"It takes a set of things which are orderable,
and gives a sequence of those things in order."

Sort as a type

• This completely defines sorting.

• It does not matter what we are sorting, 
as long as the items have an ordering.

• Concrete implementation is irrelevant.

On sort

sort :: Ord T ⇒ (i : [T]) → (v : [T] | elems(i) = elems(v)

∧ nondecreasing(v))type class

constraint

input type

output type

"It takes a set of things which are orderable,
and gives a sequence of those things in order."

Sort as a type

Spoken: This declarative style of definition in a type system puts us in the realm of
conceptual role.

• This completely defines sorting.

• It does not matter what we are sorting, 
as long as the items have an ordering.

• Concrete implementation is irrelevant.

Realm: conceptual role

sort :: Ord T ⇒ (i : [T]) → (v : [T] | elems(i) = elems(v)

∧ nondecreasing(v))type class

constraint

input type

output type

On sort
"It takes a set of things which are orderable,
and gives a sequence of those things in order."

Sort as a type

Spoken: Keep that last point in mind: concrete implementation is irrelevant. Also, types are useful for more than
just procedures — computer scientists developed ways of representing many kinds of relations in a type system:

Some representable concepts

container

bucket shed

traversable

sort

items: distinct

items: orderable

in out

Spoken: For example, we can model classes of object like container, with instances like
box or shed. If a container has distinct object and not something liquid, then the
container is traversable. If something is traversable and the items are orderable, then we
can sort those items.

Concept representation in a type system

• What is a type system?

• Why should cognitive scientists care about types?

• What constitutes the effects of learning?

• What does this model lack?

What is a type system?

Term

Type
has

Spoken: In a type system, types are the set of values that can inhabit a term, where a
term is a syntactic construct that — at any point during its existence at runtime
— possesses exactly one value with its ascribed type.

What is a type system?

Term

Type
has

Value

has*

What is a type system?

Term

Type
has

Value

has*

refer

Spoken: We call values of a type inhabitants.

What is a type system?

ValueType refer

Spoken: For example:

What is a type system?

ValueType refer

"hello world"

12

String

Int

Spoken: The phrase "hello world" inhabits the type "String", and the number 12
inhabits the type "Int".

What is a type system?

ValueType refer

"hello world"

12

String

Int

⏟

primitive*

Spoken: Types like these are called primitive data types.

* String is often non-primitive, an alias for a list of characters.

What is a type system?

ValueType refer

"hello world"

12

Red Blue Green

Car{model="prius",

year=2013}----

String

Int

Color

Car

⏟⏟
algebraic

primitive*

Spoken: Algebraic data types allow us to express variants, such as "red" being a "color",
or {alternatively} "blue", "green", and other colors. We can also express structures of
typed data, such as "car" consisting of relevant typed details.

What is a type system?

ValueType refer

"hello world"

12

Red Blue Green

Car{model="prius",

year=2013}----

("CogSci", 2018)

[0, 1, 3, 6]

Some("LaPI")

String

Int

Color

Car

(String, Int)

List Int

Maybe String

⏟⏟
algebraic⏟

composite

primitive*

Spoken: Composite types are defined in terms of other types. The "Maybe" type at the
bottom, sometimes called "optional", is either {an empty value} or {some value of a
particular type}. These composite types are also algebraic.

What is a type system?

ValueType refer

"hello world"

12

Red Blue Green

Car{model="prius",

year=2013}----

("CogSci", 2018)

[0, 1, 3, 6]

Some("LaPI")

String

Int

Color

Car

(String, Int)

List Int

Maybe String

⏟⏟
algebraic⏟

composite

primitive*

Spoken: The value-type relation is like that of an {next slide} entity...

What is a type system?

ValueType refer

entity

Spoken: ...entity with its referent {next slide} symbol.

What is a type system?

Dog

ValueType refer

entitysymbol

Spoken: Here an aptly-named creature "Inu" is a real-world entity bearing the abstract
concept of "dog".

What is a type system?

referKind Type

Spoken: There is also the kind system — the "type system for types".

What is a type system?

Int

List Int

Maybe String

TYPE

TYPE

TYPE

referKind Type

Spoken: The "TYPE" kind is for types whose values exist at runtime. Historically, this
kind is written as a star.

What is a type system?

Int

List Int

Maybe String

List

Maybe

TYPE

TYPE

TYPE

TYPE → TYPE

TYPE → TYPE

referKind Type+

Spoken: With kinds, we can reason about what are called higher-kinded types. "Maybe"
is a type operator that, when given a type like "String", yields a type for optional strings.

What is a type system?

Int

List Int

Maybe String

List

Maybe

List Maybe

TYPE

TYPE

TYPE

TYPE → TYPE

TYPE → TYPE

ERROR!

referKind Type+

Spoken: The kind system prevents nonsense at the type-level. What does a list of
"Maybe"s mean? Perhaps the programmer meant something like this:

What is a type system?

Int

List Int

Maybe String

List

Maybe

List (Maybe Int)

TYPE

TYPE

TYPE

TYPE → TYPE

TYPE → TYPE

TYPE

referKind Type+

What is a type system?

Int

List Int

Maybe String

List

Maybe

List (Maybe Int)

Ord

TYPE

TYPE

TYPE

TYPE → TYPE

TYPE → TYPE

TYPE

TYPE → CONSTRAINT

referKind Type+

Spoken: Kinds help us express constraints. For example:

What is a type system?

Int

List Int

Maybe String

List

Maybe

List (Maybe Int)

Ord

TYPE

TYPE

TYPE

TYPE → TYPE

TYPE → TYPE

TYPE

TYPE → CONSTRAINT

referKind Type+

sort :: Ord T ⇒ ⋯

type class

constraint

Spoken: We saw in the "sort" type earlier a type class
constraint. It says "Ord t", making "sort"only valid when "t"
satisfies whatever "Ord" requires of it. Ord requires a "compare"
function which takes any two values of type "t" and returns one
of the variants {less than}, {equal to}, or {greater than}.

What is a type system?
po

ly
m

or
ph

is
m

typ
e o

pera
tors

dependent types

Spoken: The λ-cube here describes the type theory involved, along three orthogonal axes.

What is a type system?
po

ly
m

or
ph

is
m

typ
e o

pera
tors

dependent types

abstraction: 
	 value → value

Spoken: All corners arise from the bottom-left, simply-typed λ-calculus. This gives us a
starting point of abstractions — functions that take values and return values.

What is a type system?
po

ly
m

or
ph

is
m

typ
e o

pera
tors

dependent types

abstraction: 
	 value → value
polymorphism: 
	 type → value

Spoken: One axis is polymorphism, which lets us construct values according to any
given type.

What is a type system?
po

ly
m

or
ph

is
m

typ
e o

pera
tors

dependent types

abstraction: 
	 value → value
polymorphism: 
	 type → value

type operators: 
	 type → type

Spoken: Type operators give us the composite types we saw earlier, like "list" and
"maybe". They take types as arguments and return another type. With type operators
comes {the kind system}.

What is a type system?
po

ly
m

or
ph

is
m

typ
e o

pera
tors

dependent types

abstraction: 
	 value → value
polymorphism: 
	 type → value

type operators: 
	 type → type

dependent types: 
	 value → type

Spoken: Dependent types allow for first-order logic at the type-level that depend on
values that may exist at runtime. For example:

What is a type system?
po

ly
m

or
ph

is
m

typ
e o

pera
tors

dependent types

sort :: Ord T ⇒ (i : [T]) → (v : [T] | elems(i) = elems(v) ∧ nondecreasing(v)

abstraction: 
	 value → value
polymorphism: 
	 type → value

type operators: 
	 type → type

dependent types: 
	 value → type

input type output type

Spoken: The return type of "sort" is every list of type "t" that shares exactly all elements of the input and is
also non-decreasing. This is called a "dependent function": it universally quantifies over the input and
mandates that the output type is satisfied.

What is a type system?
calculus of constructions

po
ly

m
or

ph
is

m

typ
e o

pera
tors

dependent types

abstraction: 
	 value → value
polymorphism: 
	 type → value

type operators: 
	 type → type

dependent types: 
	 value → type

sort :: Ord T ⇒ (i : [T]) → (v : [T] | elems(i) = elems(v) ∧ nondecreasing(v)

input type output type

Spoken: The calculus of constructions, where all of these features are present, is the basis of
many theorem provers and some programming languages — including Agda, Coq, and Idris.

Concept representation in a type system

• What is a type system?

• Why should cognitive scientists care about types?

• What constitutes the effects of learning?

• What does this model lack?

Why should cognitive scientists care
about types?

• conceptual role (expressivity)

Why should cognitive scientists care
about types?

Spoken: Types tell the story, so the naming of {variables and procedures} becomes less
important. A symbol carries no meaning without its relationships. In parentheses I've
denoted the relevant programming lingo.

• conceptual role (expressivity)

• no nonsense values (make illegal states unrepresentable)

Why should cognitive scientists care
about types?

Spoken: Types make illegal states unrepresentable — e.g. if I enforce "attendance" as a
natural number and not an integer, I cannot assign an invalid negative number.

• conceptual role (expressivity)

• no nonsense values (make illegal states unrepresentable)

• implementation is irrelevant (illegal behavior cannot compile)

Why should cognitive scientists care
about types?

Spoken: Illegal behavior cannot compile — e.g. sort must return a list that is non-
decreasing. An implementation of sort that is broken cannot exist in this framing.

Key Idea 1

Programming languages give more than composition:
they enable complex declarations of relation between
computational artifacts.

Spoken: There's a key idea here. (read.) This is perhaps best illustrated by thinking
about the role of the programmer:

Programmers are translators

λ

Spoken: I regard programmers as translators. They must translate a mental model into
a programming language, and {next slide} vice-versa

λ

Programmers are translators

λ

Programmers are translators

Spoken: Many high-level programming languages prioritize ergonomics to make this
translation process easier. For the programmer, an {entire computational workflow}
can be modeled using {only type declarations}, without having to write any concrete code.

Key Idea 2

Type systems serve as a framework in
which programmers represent concepts.

Spoken: Here's another key idea. (read.)

Concept representation in a type system

• What is a type system?

• Why should cognitive scientists care about types?

• What constitutes the effects of learning?

• What does this model lack?

What constitutes the effects of learning?

Spoken: We can synthesize programs...

What constitutes the effects of learning?

• Program synthesis

Spoken: ...from examples, or we can even use the type alone as a program synthesis
task. For example:

sort :: Ord T ⇒ (i : [T]) → (v : [T] | elems(i) = elems(v)

∧ nondecreasing(v))

Polikarpova, Kuraj, & Solar-Lezama (2016)

• Program synthesis

What constitutes the effects of learning?

Spoken: In work by Polikarpova and others, a machine
implemented sort when given an equivalent type-definition to
the one I've shown you. (now slowly:) We can {start with the
abstract idea of sort}, and {later} learn its implementation.

• Program synthesis

• Implementation-level refactoring

What constitutes the effects of learning?

Spoken: Implementation-level refactoring can be performed by a learning process. 
For example:

• Program synthesis

• Implementation-level refactoring

What constitutes the effects of learning?

(define (add2 𝓵)
 (map (λ (x) (+ x 2))) 𝓵)

(define (add3 𝓵)
 (map (λ (x) (+ x 3))) 𝓵) (define add2 (add-k 2))

(define ((add-k k) 𝓵)
 (map (λ (x) (+ x k))) 𝓵)

(define add3 (add-k 3))

Ellis, Morales, Sablé-Meyer, Solar-Lezama, Tenenbaum (2018)

Spoken: In collaboration with Kevin Ellis and others, who
will be talking later today, we "compressed" common code
into reusable helper functions, making useful concepts
more accessible for future learning.

What constitutes the effects of learning?

• Program synthesis

• Implementation-level refactoring

• Type-level refactoring

Spoken: Type-level refactoring allows us to go...

What constitutes the effects of learning?

• Program synthesis

• Implementation-level refactoring

• Type-level refactoring

Incremental (Peano)enum Nat {
 Zero,
 Succ(Nat),
}
let twenty: Nat = Succ(Succ(Succ(Succ(
 Succ(Succ(Succ(Succ(
 Succ(Succ(Succ(Succ(
 Succ(Succ(Succ(Succ(
 Succ(Succ(Succ(Succ(
 Zero))))))))))))))))
))))

Spoken: From a representation of natural numbers that is incremental...

enum Nat {
 Zero,
 Succ(Nat),
}
let twenty: Nat = Succ(Succ(Succ(Succ(
 Succ(Succ(Succ(Succ(
 Succ(Succ(Succ(Succ(
 Succ(Succ(Succ(Succ(
 Succ(Succ(Succ(Succ(
 Zero))))))))))))))))
))))

Incremental (Peano) Digital (Arabic numeral)

What constitutes the effects of learning?

enum Digit {
 Zero,
 One,
 ...,
 Nine,
}
type Nat = [Digit];
let twenty: Nat = [Two, Zero];

• Program synthesis

• Implementation-level refactoring

• Type-level refactoring

Spoken: to a digital representation, as in the Arabic numeral system. A representation
transformation like this corresponds to conceptual change.

What constitutes the effects of learning?

• Program synthesis

• Implementation-level refactoring

• Type-level refactoring

• Type generation

Spoken: Generating types, whether by {intentional learning} or by {creative
imagination}, is fundamental to a type-based representation. For example:

What constitutes the effects of learning?

• Program synthesis

• Implementation-level refactoring

• Type-level refactoring

• Type generation

class Organism o where
 procreate :: ... -- permits random mutation

type Environment = ...

evolution :: Organism o => (Environment, [o]) → (Environment, [o])

Spoken: Darwinian evolution can be discovered by creatively writing some types, and trying
to resolve missing pieces with more types or by iterating on the definition existing types.

Concept representation in a type system

• What is a type system?

• Why should cognitive scientists care about types?

• What constitutes the effects of learning?

• What does this model lack?

What does this model lack?

• Learning the framework vs. learning within the framework

Spoken: We've been assuming a very sophisticated type system, but maybe it must be
learned via a prototypical type system.

What does this model lack?

• Learning the framework vs. learning within the framework 
— what is innate?

Spoken: If the whole system is not innate, there must be faculty to learn it.

What does this model lack?

• Learning the framework vs. learning within the framework 
— what is innate?

• The language is formal

Spoken: If types, or "concepts", do not match, the type system does not {try harder} to
{find a way} of fitting them — types either fit or they don't.

What does this model lack?

• Learning the framework vs. learning within the framework 
— what is innate?

• The language is formal

• Types must be fully formulated (no "holes")

Spoken: Types cannot have "holes" in their declarations, they must be completely valid.
However, types can be iterated upon, as we saw earlier with the placeholder example.

Concept representation in a type system

Learning as Program Induction, CogSci 2018

Lucas E. Morales
lucasem@mit.edu

Purpose:

• Learning programs ("child coder") is more than writing
procedural code.

• Use type systems to express meaning, 
à la conceptual role semantics.

• Type systems provide a good representation for a
computational study of concept learning.

mailto:lucasem@mit.edu

