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1 Overview of Markov Chains
A Markov chain is defined by a state space X and a transition matrix P which
satisfy the Markov property: for all x0, x1, . . . , xt ∈ X and t ≥ 1,

P[Xt = xt|Xt−1 = xt−1, . . . , X1 = x1, X0 = x0]

= P[Xt = xt|Xt−1 = xt−1] = P (xt−1, xt)

where P (xt−1, xt) is an entry in the transition matrix. The Markov property means
that the conditional probability on a state over previous states only depends on the
immediately preceding state.

It follows that P is stochastic, that is each x-th row P (x, ·) is a probability
distribution. Suppose we start with a distribution µ0 on our state space. After one
stochastic iteration, or step of the Markov chain, our new distribution is µ1 = µ0P .
By induction it can be shown that the distribution at iteration t ≥ 1 is µt = µ0P

t.
A Markov chain is irreducible if it is possible to get to any state from any other

state. That is, for all x, x′ ∈ X , there exists a t ≥ 1 such that P t(x, x′) > 0.
A state x ∈ X has period k if every return from x to x occurs in a multiple of k

iterations. The period of a state x is defined as the largest such k:
kx = gcd{t ≥ 1 : P t(x, x) > 0}

If every state has period 1, then the Markov chain is aperiodic, else it is periodic.
Lemma 1. If a Markov chain is irreducible and aperiodic, there exists some m such
that for all m′ ≥ m, Pm′

(x, x′) > 0 for all x, x′ ∈ X .
Proof. Because the Markov chain is irreducible, for every x, x′ ∈ X there exists an
r = r(x, x′) where P r(x, x′) > 0. By aperiodicity, for every x ∈ X there exists a
t = t(x) where P t(x, x) > 0. Because the product of two entry-wise positive matrices
is also entry-wise positive, we take m = maxx (t(x) + maxx′ r(x, x′)).

A stationary distribution π of a Markov chain is a probability distribution
over the state space that satisfies π = Pπ.
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2 Markov Chains in Finite State Spaces
Theorem 1 (Perron-Frobenius Theorem). Let A ∈ Rn×n be entry-wise positive with
eigenvalues

|λ1| ≥ |λ2| ≥ · · · |λn| ≥ 0

and corresponding eigenvectors si. Then |λ1| > |λ2| and s1 is component-wise
positive.

Proposition 1. Every irreducible and aperiodic Markov chain on finite state space
has a unique stationary distribution.

Proof. Because the state space is finite, let n be the cardinality of the state space
so that P ∈ Rn×n. By Lemma 1, there exists some m such that Pm is entry-wise
positive. By Theorem 1 on A = (Pm)⊤ we have a unique maximum eigenvalue λ1

and a corresponding component-wise positive eigenvector π⊤. We claim that λ1 = 1
and that π is the unique stationary distribution.

Let µ0 be a probability distribution on X and consider the limit as t = mk → ∞.
If λ1 < 1 then |µ0P

t| = |Akµ⊤
0 | → 0, and similarly if λ1 > 1 then |µ0P

t| = |Akµ⊤
0 | →

∞. However, because P is a stochastic matrix, we know exactly that |P tµ0| = 1,
therefore it must be the case that λ1 = 1. By the definition of eigenvector, Aπ⊤ = π⊤

so π = πPm. Because every other eigenvalue is smaller than 1, π is the unique vector
for which π = πPm.

Again by Lemma 1, Pm+d is entry-wise positive for non-negative integer d —
meaning that once the chain transitions becomes positive after m iterations, they
stay positive. Consider the case d = 1 and we take our approach again, yielding the
unique π′ = π′Pm+1. This means π′ = π′ (Pm+1

)m
= π′Pm(m+1), but we similarly

have π = π (Pm)m+1 = πPm(m+1). Because both π and π′ are the unique such
vectors, they must be the same vector. Therefore π = πPm+1 = (πPm)P = πP
and we complete the proof.

We will assume finite state spaces for the rest of this paper.

3 Convergence and Mixing Time
We define a metric that will be useful for measuring the distance between distribu-
tions, prove that certain Markov chains converge to the stationary distribution, and
examine how quickly such a chain converges.

The total variation distance between two probability distributions µ and ν
on X is the largest difference between the probabilities they each assign the same
event:

∥µ− ν∥TV = max
A⊆X

|µ(A)− ν(A)| = 1

2

∑
x∈X

|µ(x)− ν(x)|
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Theorem 2 (Power iteration). Let A be a matrix with a unique largest eigenvalue
|λ1| > |λ2| that has eigenvector v1, and let b0 be a vector that is not orthogonal to
v1. The power iteration described by

bk =
Akb0

∥Akb0∥

converges geometrically to a multiple of v1:

|bk − v1| ≤ C

∣∣∣∣λ2

λ1

∣∣∣∣k
for some C > 0.

Theorem 3 (Convergence Theorem). Given an irreducible and aperiodic Markov
chain with transition matrix P and stationary distribution π, there exists an α ∈
(0, 1) and C > 0 such that

max
x∈X

∥P t(x, ·)− π∥TV ≤ Cαt

Proof. We will prove this statement for finite state spaces, though it has been proven
for infinite spaces as well. By Proposition 1, we showed that therefore P has unique
largest eigenvalue of 1 with corresponding left eigenvector π. Because P is stochastic,
P (x, ·) is a probability distribution whose elements sum to 1 and is therefore not
orthogonal to π for all x ∈ X . Let α = | 1

λ2
| ∈ (0, 1) then by Theorem 2 we have

that for all x ∈ X :
|P t(x, ·)− π| ≤ Cαt

from which the theorem follows.

From this statement of the convergence theorem comes the study of rapid mixing,
where a P ∗ is found which minimizes the second largest eigenvalue without changing
the stationary distribution — and hence getting close to the stationary distribution
in fewer iterations. We will revisit this in Section 4.

We define the maximal distance from the stationary distribution after t itera-
tions:

d(t) = max
x∈X

∥P t(x, ·)− π∥TV

which will be useful for establishing a convergence bound over a number of iterations
on the chain. We more specifically define the maximal distance between any two
distributions on our state space after some number of iterations:

d̄(t) = max
x,x′∈X

∥P t(x, ·)− P t(y, ·)∥TV
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Proposition 2. For positive integer t,

d(t) ≤ d̄(t) ≤ 2d(t)

and for positive integer c,
d̄(ct) ≤ d̄(t)c

Proof sketch. The first statement can be proven by considering the distance between
P t(x, ·) and π evaluated at a particular event and relating it to the distance between
any P t(x, ·) and P t(x′, ·) using the triangle inequality. The second statement holds
because d̄ is submultiplicative — i.e. d̄(a + b) ≤ d̄(a)d̄(b) — which can be proven
using an optimal coupling, a topic we will not discuss here.

The mixing time is how we measure rate of convergence:

tmix(ϵ) = min{t : d(t) < ϵ}

By Proposition 2, for positive integer ℓ, we have

d(ℓtmix(ϵ)) ≤ d̄(tmix(ϵ))
ℓ ≤ (2d(tmix(ϵ)))

ℓ ≤ (2ϵ)ℓ

Let t∗ = tmix(1/4) be the mixing time to get the total variation distance to the
stationary distribution within 1/4. We then have that

d(ℓt∗) ≤ 2−ℓ

and that
tmix(ϵ) ≤

⌈
log2

1

ϵ

⌉
t∗

4 Rapid Mixing on Undirected Graphs using Semidefi-
nite Programming

We observed in the proof of Theorem 3 that convergence is exponential in | 1λ2
|.

It follows that for small λ2, mixing is fast. Recall that, as in the convention of
Theorem 1, λ2 is the second-largest eigenvalue by magnitude (or second-largest
eigenvalue modulus, SLEM). The rapid mixing problem is to find some stochastic
P ∗ that minimizes the mixing time without changing the stationary distribution π:

minimize |λ2(P )|
subject to P ≥ 0, P1 = 1

s(P ) = π, f(P )
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where s(P ) is the stationary distribution under P , and f(P ) are additional con-
straints which depend on the particular problem.

Let G = (V, E) be a connected undirected graph with vertices V = {1, . . . , n}
and edges E where (i, j) ∈ E ⇔ (j, i) ∈ E . We define a Markov chain on state space
V with symmetric transition matrix P ∈ Rn×n where Pij = 0 if i ̸= j and (i, j) ̸∈ E .

Proposition 3. If a Markov chain has symmetric transition matrix P , then its
stationary distribution π = 1

n1 is uniform.

Proof. Because P is symmetric and stochastic,

(1P )j =
n∑

i=1

Pij = 1

Therefore 1P = 1 from which it follows, by normalization, that π = 1
n1.

With Proposition 3 we can simplify the rapid mixing problem for G:

minimize |λ2(P )|
subject to P ≥ 0, P1 = 1, P = P⊤

Pij = 0, (i, j) ̸∈ E , i ̸= j

Theorem 4. The rapid mixing problem for G can be solved by a semidefinite pro-
gram.

Proof. We first reformulate λ2 by taking the spectral norm of the orthogonal pro-
jection of P against 1:

λ2(P ) = ∥P − 1

n
11⊤∥2

We then bound this norm by a scaled identity matrix:

minimize s

subject to − sI ⪯ P − 1

n
11⊤ ⪯ sI

P ≥ 0, P1 = 1, P = P⊤

Pij = 0, (i, j) ̸∈ E , i ̸= j

With a semidefinite program (SDP) in hand, the dual can be used to determine
optimality conditions. These conditions are developed in [Boyd et al., 2004, Section
4].
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5 The Metropolis Algorithm
The transition probabilities for a random walk on a connected graph G = (V, E)
where di is the degree of vertex i:

P rw
ij =

{
1/di if (i, j) ∈ E and i ̸= j

0 otherwise

For this chain, the stationary distribution at each vertex is proportional to vertex’s
degree.

We can construct a Markov chain with an arbitrary stationary distribution
π = (π1, . . . , πn) by modifying the random walk: let Rij = (πjP

rw
ji )/(πiP

rw
ij ) and

define the Metropolis algorithm as a Markov chain with the following transition
probabilities:

Mij =


P rw
ij min{1, Rij} if (i, j) ∈ E and i ̸= j

1−
∑

{i,k}∈E P
rw
ik min{1, Rik} if i = j

0 otherwise

where Pm
ii is effectively the probability of a “rejected proposal” coming from state i.

More generally, the Metropolis algorithm can modify a transition matrix P to obtain
a new transition matrix M which converges to a particular stationary distribution
π. Let Rij = (πjPji)/(πiPij):

Mij =


Pij min{1, Rij} if (i, j) ∈ E and i ̸= j

Pii +
∑

{i,k}∈E Pik (1−min{1, Rik}) if i = j

0 otherwise

The Metropolis chain based on a random walk with uniform stationary distri-
bution π is

M =


min{1/di, 1/dj} if (i, j) ∈ E and i ̸= j∑

(i,j)∈E max{0, 1/di − 1/dk} if i = j

0 otherwise

5.1 Metropolis with Independent Proposals
The Metropolis algorithm can have the base chain set to repeated independent
samples. For state space X = {1, . . . , n} (numbered without loss of generality) and
a probability distribution p(x), the base chain we use is described by transition
matrix P (x, x′) = p(x′). Let M be the Metropolis chain using this base chain with
Rij =

π(j)p(i)
π(i)p(j) .
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Theorem 5 ([Liu, 1996]). The Metropolis chain M with base chain of repeated in-
dependent samples from distribution p and SLEM λ2 has bounded variation distance
from start state x:

∥M t(x, ·), π∥TV ≤ λk
2√

π(x)

It follows from Theorem 5 that the mixing time for M is

tmix(ϵ) =
⌈
logλ2

(
ϵ
√
r
)⌉

where r = minx∈X π(x).
It is difficult to rigorously determine similar bounds for base chains which do

not follow this repeated-independent model.
In [Boyd et al., 2004], empirical comparisons are made between mixing times

of the Metropolis chain versus solutions to the SDP from Theorem 4. These ex-
periments found the SDP to never yield a slower-mixing chain than the Metropolis
algorithm. However, the constrained domain under which the SDP can be applied
— in which the stationary distribution is uniform and the transitions are symmet-
ric — is far more restrictive than the broad use-cases of the Metropolis algorithm
(or, even more so, the Metropolis-Hastings algorithm, which is an extension of the
Metropolis algorithm). If SDP can be used, and especially if the dual proves that
its solution is optimal, then it should be applied in favor of the Metropolis-Hastings
algorithm.

6 Conclusion
In this survey, we reviewed at how to measure convergence for Markov chains and
analyzed at two different applications: rapid mixing and the Metropolis algorithm.
Markov chains are foundational to many techniques for Bayesian inference, and
establishing rigorous convergence bounds for such techniques is a desirable direction
for future research in probabilistic approaches of machine learning.
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