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Abstract

Representativenessis a centralexplanatoryconstructin
cognitivesciencebut suffersfrom thelackof aprincipled
theoreticalaccount.Herewe presenta formal definition
of onesenseof representativeness– what it meansto be
a goodexampleof a processor category in the context
of Bayesianinference. This analysisclarifies the rela-
tion betweenrepresentativenessasan intuitive statistical
heuristicandnormative principlesof inductive inference.
It alsoleadsto strongquantitative predictionsaboutpeo-
ple’s judgments,which comparefavorably to alternative
accountsbasedonlikelihoodor similarity whenevaluated
ondatafrom two experiments.

Why do peoplethink that Linda, the politically ac-
tive, single, outspoken, and very bright 31-year-old, is
morelikely to bea feministbanktellerthanto beabank-
teller, eventhoughthis is logically impossible?Why do
we think that the sequence��������� is more likely than
the sequence��������� to be producedby flipping a fair
coin, eventhoughbothareequallylikely? Thestandard
answerin cognitive psychology(Kahneman& Tversky,
1972)is thatour brainsaredesignedto judge“represen-
tativeness”,notprobability:Lindais morerepresentative
of feministbanktellersthanof banktellers,and ��������� is
morerepresentativeof flipping a fair coin thanis ��������� ,
despiteanything thatprobabilitytheorytellsus.

Not only errorsin probabilisticreasoning,but numer-
ousotherphenomenaof categorization,comparison,and
inferencehave beenattributedto the influenceof repre-
sentativeness(or prototypicalityor “goodnessof exam-
ple”; Mervis & Rosch,1981;Osherson,Smith, Wilkie,
Lopez,& Shafir, 1990;Rips,1975). However, a princi-
pled accountof representativenesshasnot beeneasyto
comeby. Its leadingproponents(Kahneman& Tversky,
1996; Mervis & Rosch,1981) have assertedthat rep-
resentativenessshouldbe definedonly operationallyin
termsof people’s judgments;ana priori, analyticdefini-
tion neednot be given. Critics have counteredthat this
conceptis too vagueto serve asan explanationof intu-
itiveprobabilityjudgment(Gigerenzer, 1996).

This paperpresentsa framework for constructingra-
tionalmodelsof representativeness,basedonaBayesian
analysisof what makesan observation a goodexample
of a category or process. The goal is to identify pre-
cisely one senseof representativenessand show that it
hasa rationalbasisin normative principlesof inductive

reasoning. We will first point out someshortcomings
of previous accountsbasedon likelihood or similarity,
andshow how a Bayesianapproachcanovercomethose
problems.We will thencomparethequantitative predic-
tions of Bayesian,likelihood,andsimilarity modelson
two setsof representativenessjudgments.

Previousapproaches
Lik elihood. In trying to relateintuitions aboutrepre-
sentativenessto rationalstatisticalinferences,a natural
startingpoint is theconceptof likelihood. Let d denote
someobserved data,suchasa sequenceof coin tosses,
and h denotesomehypothesisabout the sourceof d,
suchasflipping a fair coin. The probability of observ-
ing d given thath is true,P� d � h � , is calleda likelihood.
Let R� d 	 h � denoterepresentativeness– how representa-
tive theobservationd is of thegenerative processin h.

Gigerenzer& Hoffrage(1995)haveproposedthatrep-
resentativeness,to the extent that it canbe definedrig-
orously, is equivalent to likelihood: R� d 	 h ��
 P � d � h� .
Thisproposalis appealingin that,otherfactorsaside,the
morefrequentlyh leadsto observingd, themorerepre-
sentatived shouldbeof h. It is alsoconsistentwith some
classicerrorsin probability judgment,suchasthe con-
junctionfallacy: apersonis almostcertainlymorelikely
to matchLinda’sdescriptiongiventhatsheis abankteller
anda feministthangivenonly thatsheis abankteller.

While likelihoodandrepresentativenessseemrelated,
however, they arenot equivalent.Two observationswith
equallikelihoodmaydiffer in representativeness.Know-
ing that ��������� and ��������� areequally likely to be pro-
ducedby a fair coin doesnot changeour judgmentthat
the latter is the more representative outcome. Tversky
& Kahneman(1983)provide several examplesof cases
in which a morerepresentative outcomeis actuallyless
likely. Any sequenceof fair coinflips, suchas ������������� ,
is lesslikely thanoneof its subseqences,suchas � or
����� , but mayeasilybemorerepresentative. More color-
fully, “being divorcedfour times” is morerepresentative
of Hollywoodactressesthanis “voting democratic”,but
theformeris certainlylesslikely.

Figure 1 illustratesa simple version of the dissoci-
ation betweenrepresentativenessand likelihood. Each
panelshows a sampleof threepoints from a Gaussian
distribution. With independentsampling,thetotal likeli-
hoodof asampleequalstheproductof thelikelihoodsfor
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Figure1: Givenanormaldistribution,theleft samplehas
greaterlikelihoodbut theright is morerepresentative.

eachitem in thesample.Thusthe left samplehasmuch
greaterlikelihood,becauseeachpoint is muchcloserto
thepeakof thedistribution thanin theright sample.Yet
themorespread-outsampleontheright seemsmorerep-
resentative. We testedthis intuition in a survey of 138
Stanfordundergraduates.They werefirst shown a nor-
mally distributedsetof thirty “widgets” producedby a
factory. The widgetsweresimpledrawings resembling
nutsor bolts,varyingonly in their sizes.They werethen
shown threedifferentsamples,eachwith threewidgets,
andasked to rateon a scaleof 1-10 how representative
eachsamplewasof thewidgetsproducedby this factory.
Eachsamplecontainedapointatthemeanof theoriginal
distribution, andpointsat z 
� 2� 85 (“broad sample”),
z 
�� 1 (“intermediatesample”),or z 
�� 0� 05 (“narrow
sample”).The intermediatesample,with a standardde-
viation similar to thepopulation,receiveda significantly
higherratingthandid themuchmorelikely narrow sam-
ple(7.1vs. 5.2, p ��� 05). Thebroadsample,with lowest
likelihoodof all, alsoreceived a lower rating (6.9) than
theintermediatesample,but notby asignificantmargin.

We also testedwhether intermediate-rangesamples
aremore representative for naturalcategories,usingas
stimuli black-and-whitepicturesof birds. In a design
parallel to the widget study, 135 differentStanfordun-
dergraduatessaw threesamplesof birds, eachcontain-
ing threemembers,and rated how representative they
wereof birdsin general.Thesamplesconsistedof either
threerobins(“narrow”); a robin, aneagle,anda seagull
(“intermediate”); or a robin, an ostrich, and a penguin
(“broad”). Although the robinswere individually rated
asmore representative than the otherbirds (by a sepa-
rategroupof 100 subjects),the setof threerobinswas
consideredthe leastrepresentative of the threesamples.
As with the widgets,the intermediatesamplewasrated
morerepresentative (6.3) thaneitherthenarrow (5.1) or
broad(5.3)samples(p ��� 05 for bothdifferences).

For naturalcategoriesaswell asfor theartificial wid-
gets,a setof representative examplesturnsout not to be
the mostrepresentative setof examples.Samplelikeli-
hood,becauseit is merelytheproductof eachexample’s
individual likelihood,cannotcapturethis phenomenon.
At best, then, likelihood may be only one factor con-
tributing to thecomputationof representativeness.

Similarity . Mostattemptsto explicatethemechanisms
of representativeness,including that of Kahneman&
Tversky (1972),rely notonlikelihoodbut onsomesense

of similarity. That is, anobservationd is representative
of a category or processh to theextent that it is similar
to thesetof observationsh typically generates.

Similarity seemsto avoid someof the problemsthat
likelihoodencounters.��������� may be morerepresenta-
tive of a fair coin than ��������� becauseit is moresimilar
on averageto othercoin flip sequences,basedon such
featuresasthe numberof headsor the numberof alter-
nations.Likewise,someonewho hasbeendivorcedfour
timesmaybemoresimilarto theprototypicalHollywood
actressthan someonewho votesdemocratic,if marital
statusis weightedmoreheavily thanpolitical affiliation
in computingsimilarity to Hollywoodactresses.

However, theexplanatorypower of a similarity-based
accounthingeson beingableto specifywhatmakestwo
stimuli more or lesssimilar, what the relevant features
areandhow arethey weighted.Similarity unconstrained
is liableto leadto circularexplanations:having hadmul-
tiple divorcesis more representative of Hollywood ac-
tressesbecausemaritalstatusis morehighly weightedin
computingsimilarity to Hollywoodactresses,but why is
marital statussohighly weighted,if not becausehaving
multipledivorcesis sotypical of Hollywoodactresses?

Equatingrepresentativenesswith similarity also runs
into a problemwhen evaluating the representativeness
of a set of objects,as in Figure 1. Similarity is usu-
ally definedas a relation betweenpairs of stimuli, but
herewe requirea judgmentof similarity betweentwo
setsof stimuli, the sampleandthe population. It is not
immediatelyobvioushow bestto extendsimilarity from
apairwiseto asetwisemeasure.Theindividualelements
of the left samplearecertainlymoresimilar to the av-
eragememberof the populationthan are the elements
of theright sample.Theleft samplealsocomescloserto
minimizingtheaveragedistancebetweenelementsof the
populationandelementsof thesample.If similarity be-
tweensetsis definedaccordingto oneof thesemeasures,
it will fail to matchupwith representativeness.

Finally, andmostproblematicfor our purposeshere,
a definition in termsof similarity fails to elucidatethe
rational basisof representativeness,and thus brings us
nocloserto explainingwhenandwhy representativeness
leadsto reasonablestatisticalinferences.Henceweseem
to beleft with two less-than-perfectoptionsfor defining
representativeness:the simple, rational, but clearly in-
sufficient conceptof likelihood,or themoreflexible but
notoriouslyslipperyconceptof similarity.

A Bayesiananalysis
In this sectionwe presenta Bayesiananalysisof repre-
sentativenessthataddressessomeof theshortcomingsof
the likelihoodandsimilarity proposals.As with likeli-
hood, Bayesianrepresentativenesstakes the form of a
simpleprobabilisticquantity, which in factincludeslike-
lihood as one component. But like the similarity ap-
proach,it canaccountfor dissociationsof representative-
nessandlikelihood,whena lessprobablefeatureof the
stimuli is alsomorediagnosticof theprocessor category
in question.Moreover, it appliesjust aswell to evaluat-



ing therepresentativenesof asetof examples(e.g.Figure
1) asit doesto individualexamples.

Our notionof a “good example”is definedin thecon-
text of aBayesianinductive inferencetask.As above, let
d denotesomeobserved data,and let ��
 �

h1 	������ hn �
denoteasetof n hypotheses(assumedto bemutuallyex-
clusive andexhaustive) that might explain the observed
data.For eachhi , we requireboththelikelihoodP � d � hi �
andaprior probability, P � hi � , whichexpressesthedegree
of belief in hi befored is observed. Let h̄i 
 �

h j � � :
j �
 i � denotethe negation of hypothesishi , the asser-
tion thatsomehypothesisotherthanhi is thetruesource
of d. Thenwe defineour measureof representativeness
R� d 	 hi � to bethelogarithmof thelikelihoodratio

L � d � hi ��
 P � d � hi �
P � d � h̄i �

� (1)

This definition is motivatedby Bayes’ rule, which pre-
scribesadegreeof belief in hypothesishi afterobserving
d givenby theposteriorprobability

P� hi � d ��
 P � d � hi � P � hi �
P � d � � (2)

DefiningtheposterioroddsO � hi � d ��
 P � hi � d ��� P � h̄i � d ��

P � hi � d ����� 1 � P � hi � d ��� , and the prior odds O � hi ��

P � hi � ��� 1 � P � hi ��� , wecanwrite Bayes’rule in theform:

logO � hi � d ��
 logL � d � hi ��! logO � hi � � (3)

Equation 3 shows why the log likelihood ratio,
logL � d � hi � , providesa naturalmeasureof how goodan
exampled is of hi : it indicatesthe extent to which ob-
servingd increasesor decreasesthe posterioroddsof
hi relative to the prior odds. Researchersin statistics
(Good, 1950), artificial intelligence(Pearl,1988), and
philosophy of science(Fitelson,2000)have previously
consideredlogL � d � hi � asthebestmeasurefor theweight
of evidencethatd providesfor hi , becauseit capturesthe
uniquecontribution thatd makesto ourbelief in hi inde-
pendentlyof all otherknowledgethatwe have (reflected
in P � hi � ).

To computeR� d 	 hi � in thepresenceof morethanone
alternative hypothesis,weexpressit in theform

R� d 	 hi ��
 log
P � d � hi �

∑h j "$# P� d � h j � P� h j � h̄i � �
(4)

P � h j � h̄i � is theprior probabilityof h j giventhathi is not
the trueexplanationof d: 0 when i 
 j andP � h j ����� 1 �
P � hi ��� otherwise.Equation4 shows thatd is representa-
tiveof hi to theextentthatits likelihoodunderhi exceeds
its averagelikelihoodunderalternative hypotheses.

To illustratetheanalysisconcretely, considerthesim-
ple caseof two coinflip sequences,��������� and ��������� .
Unlike the likelihood model, we cannotcomputehow
representative an observation is of a hypothesiswith-
out specifying the alternative hypothesesthat an ob-
server might consider. In the interestsof simplic-
ity, we consider just three relevant hypothesesabout

the origins of ��������� and ��������� : a fair coin (hF ), a
two-headedcoin (hT ), and a weightedcoin (hW) that
comesup headswith probability 3/5. The likelihoods
of the two sequencesunder thesehypothesesare, for
the fair coin, P �%���������&� hF �'
 P �(���������)� hF �'
� 1� 2 � 5 

0� 03125; for the two-headedcoin, P�(���������&� hT �*
 1
while P �(���������)� hT �+
 0; and for the weighted coin,
P �(���������)� hW �,
-� 3� 5 � 5 
 0� 0778while P �(���������&� hW �,

� 3� 5 � 3 � 2� 5 � 2 
 0� 0346. For concreteness,we choose
specificpriorprobabilitiesfor thesehypotheses:P � hF ��

0� 9, P� hT �.
 0� 05, and P � hW �/
 0� 05. Substi-
tuting these numbers into Equation 4, we have
R�(����������	 hF �0
 log 0 1 03125

1 2 0 1 053 0 1 14 0 1 07782 0 1 053 0 1 1 
5� 2� 85,

while R�(����������	 hF �6
 log 0 1 03125
0 2 0 1 053 0 1 14 0 1 03462 0 1 053 0 1 1 


0� 59. This result, that ��������� is morerepresentative of
a fair coin than ��������� , accordswith intuition andholds
regardlessof theprior probabilitiesweassignto thethree
alternative hypotheses. In a later section, we go be-
yond a qualitative reconstructionof intuitions to test a
quantitative model of representativenessjudgmentsfor
sequencesof coinflips.

TheBayesianapproachalsoaccountsfor caseswhere
a sample with lower likelihood appearsmore repre-
sentative. For instance,P �(�����������������&� hF � is strictly
lower than either P �%���������)� hF � or P �(���������)� hF � , but
����������������� is no lessrepresentative than ��������� . The
Bayesianaccountalso offers an intuitively compelling
definition of representativenessfor a set of examples,
such as the widgets in Figure 1. We demonstrateby
computingthe representativenessfor a sampleX from
a Gaussianpopulationh1. Let

�
x1 	�������	 xN � betheN ex-

amplesin X, mbethemeanof X, andS 
 ∑i � xi � m� 2 the
sum-of-squares.Let h1 havemeanµandvarianceσ2. We
takethehypothesisspace� to includeall possibleGaus-
siandistributionsin onedimension– eacha conceivable
alternateexplanationfor the sampleX. Because� is
an uncountablyinfinite set,the sumin the denominator
of Equation4 becomesan integral. Assumingan unin-
formative Jeffreys prior on µ	 σ (Equation3 of Minka,
1998),our expressionfor Bayesianrepresentativenessin
Equation4 thenreducesto

R� X 	 h1 ��
 N logS � 1
σ2 N � m � µ� 2 ! S 	 (5)

plusa termthatdependsonly onN andσ2.
Equation5 is maximizedwhen m 
 µ and S� N 


σ2, that is, when the meanand varianceof the sam-
ple X match the meanand varianceof the population
h1. This resultis intuitive, andit accountsfor why peo-
ple preferredintermediatesamplesof widgetsor birds
over broador narrow samplesin the surveys described
above: theN logS termpenalizesnarrower samplesand
the � S� σ2 penalizesbroadersamples. Yet this result
is also not particularly surprising. More interestingly,
Equation5 gives a generalmetric for scoringthe rep-
resentativenessof any samplefrom a Gaussiandistribu-
tion, which we will test quantitatively against people’s
judgmentsin thefollowing section.



Quantitati vemodeling
In this section,we presentquantitative modelsof repre-
sentative judgmentsfor two kindsof stimuli: sequences
of coin flips andsetsof animals. For eachdataset,we
comparethe predictionsof Bayesian,likelihood-based,
andsimilarity-basedmodels.

Coin flips
Methods. 278 Stanfordundergraduatesratedthe rep-
resentativenessof four differentcoin flip sequencesfor
eachof four hypotheticalgenerativeprocesses,underthe
coverstoryof helpingacasinodebuganew line of gam-
bling machines. The sequenceswere d1 
���������������� ,
d2 
7��������������� , d3 
7��������������� , andd4 
���������������� .
The generative processeswereh1 = “A fair coin”, h2 =
“A coin thatalwaysalternatesheadsandtails”, h3 = “A
coin thatmostlycomesup heads”,andh4 = “A coin that
alwayscomesup heads”.Theordersof bothsequences
andhypotheseswererandomizedacrosssubjects.Rep-
resentativenessjudgmentsweremadeonascaleof 1-7.

Bayesianmodel. While peoplecould constructan ar-
bitrarily large hypothesisspacefor this task, we make
the simplifying assumptionthat their hypothesisspace
canbeapproximatedby justthefour hypothesesthatthey
areaskedto makejudgmentsabout.Weconstructedsim-
ple probabilisticmodelsfor eachhypothesishi to gener-
atethenecessarylikelihoodsP� d j � hi � . Priorsfor all hy-
potheseswereassumedto beequal.To modelh1, “a fair
coin”, all likelihoodsweresetequalto their true values
of 1� 28. To modelh3, “mostly heads”,andh4, “always
heads”,we usedbinomial distributions with p 
 0� 85
and p 
 0� 99, respectively. In somesense,thesep val-
uesrepresentfreeparametersof themodel,but their val-
uesarestronglyconstrainedby themeaningof thewords
“mostly” and“always”. Their exact valuesarenot cru-
cial to the model’s performance,aslong as“always” is
taken to meansomethinglike “almost but not quite al-
ways” (i.e. p � 1� 0). To modelh4, “alwaysalternates
headsandtails”, weusedabinomialdistributionoverthe
seven possiblestatetransitionsin eachsequence,again
with “always”translatedinto probabilityasp 
 0� 99. All
modelpredictionswerethengivenby Equation4.

Lik elihood model. This model treatsrepresentative-
nessjudgmentssimply asP� d j � hi � , asspecifiedabove.

Similarity model. We defined a simple similarity-
basedmodel in terms of two intuitively relevant fea-
turesfor comparingsequences:the numberof headsin
eachsequenceandthenumberof alternationsin eachse-
quence.Let α j be the numberof headsin sequencej,
andβ j bethenumberof alternations.Thenthesimilarity
of sequencesdi andd j is definedto be

sim� di 	 d j ��
 exp � wα � αi � α j �8� wβ � βi � β j � 	 (6)

wherewα andwβ aretheweightsgivento thesetwo fea-
tures. To computesimilarity betweena sequenceanda
generatinghypothesis,weconstructaprototypefor each

hypothesisbasedon the meanvaluesof α and β over
thewholedistributionof sequencesgeneratedby thathy-
pothesis.For example,for h2, α 
 4 andβ 
 7; for h3
(again assuming“mostly” meanswith probability0� 85),
α 9 6� 8 and β 9 1� 8. Lastly, we definethe represen-
tativenessof sequencei for hypothesisj asR� di 	 h j �:

sim� di 	 h j ��� ∑k sim� di 	 hk � . Thedimensionalweightswα
andwβ arefreeparametersoptimizedto fit thedata,giv-
ing wα 
 1, wβ 
 0� 4.

Results. To compensatefor nonlineartransformations
that might affect the 1-7 rating scaleusedby subjects,
thepredictionsof eachmodelwerefirst transformedac-
cordingto apower functionwith apowerγ chosento op-
timize eachmodel’s fit, andthenmappedonto thesame
interval spannedby thedata. This givesboth the likeli-
hoodmodelandtheBayesianmodelonefreeparameter
plus two constrainedparameters(correspondingto the
meaningsof “mostly” and“always”), while thesimilar-
ity modelhasthreefree parameters(wα 	 wβ 	 andγ) and
the sametwo constrainedparameters.All threemodels
correlatehighly with subjects’representativenessjudg-
ments,althoughthe Bayesianmodel hasa slight edge
with r 
 0� 94, versus0� 87 for the likelihoodmodeland
0� 92 for thesimilarity model.Figure2 presentsanitem-
by-itemanalysis,showing that theBayesianmodelcap-
turesvirtually all of thesalientpatternsin thedata.

Animals
Methods. We useddatareportedby Osherson,Smith
et al. (1990; Tables3 and 4) in a study of category-
basedinduction. They asked one group of subjectsto
judgepairwisesimilaritiesfor a setof 10 mammals,and
a secondgroupof subjectsto judgethe strengthsof 45
argumentsof the form

�
x1 haspropertyP, x2 hasprop-

erty P, x3 haspropertyP, thereforeall mammalshave
propertyP� , wherex1 	 x2 andx3 arethreedifferentkinds
of mammalsandP is a blankbiologicalpredicate.Such
judgmentsof argumentstrengtharenot the samething
asjudgmentsof representativeness,but for now we take
them as a reasonableproxy for how representative the
sampleX 
 �

x1 	 x2 	 x3 � is of thesetof all mammals.

Bayesianmodel. We assumethat people’s hypothesis
spaceincludesthecategoryof all mammals(hM), aswell
asaninfinite numberof alternative hypotheses.For sim-
plicity, we model all hypothesesas Gaussiandistribu-
tionsin a two-dimensionalfeaturespaceobtainedfrom a
multidimensionalscaling(MDS) analysisof thesimilar-
ity judgmentsin Oshersonetal. (1990).Thisallowsusto
applyessentiallythesameanalysisusedin theprevious
sectionto computethe representativenessof a sample
from a Gaussiandistribution (Equation5), andalsopar-
allels the original approachto modelingcategory-based
inductionof Rips(1975).TheMDS spacefor animalsis
shown in Figure3. Thelargegrayoval indicatestheone-
standard-deviation contourline of hM, which we take to
bethebestfitting Gaussiandistribution for thesetof all
ten mammals.We assumethe set � of alternative hy-
pothesesincludesall Gaussiansin this two-dimensions
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Figure2: Representativenessjudgmentsfor coin flip sequences.Eachpanelshows subjects’meanjudgmentsand
the Bayesianmodelpredictionsfor the representativenessof onesequencewith respectto four differentgenerating
hypotheses:h1 = “A fair coin”, h2 = “A coin thatalwaysalternatesheadsandtails”, h3 = “A coin thatmostlycomes
upheads”,andh4 = “A coin thatalwayscomesupheads”.

space,andweagainusetheuninformativeJeffreys’ prior
P � h � (Minka, 1998; Equation3). How representative a
sampleX (e.g.

�
horse	 cow 	 squirrel� ) is of all mammals

canthenbe computedfrom a multidimensionalversion
of Equation5 (ignoringtermsequalfor all samples):

R� X 	 hm �;
 N log � S�<� N � m � µ� TV = 1 � m � µ�
� trace� SV= 1 ��	 (7)

wherem is themeanof X, S 
 ∑i � xi � m � T � xi � m � , xi
aretheMDS coordinatesof examplei, N is thenumber
of examplesin X, andµ andV arethemeanandcovari-
ancematrix of hM (Minka, 1998). Equation7 measures
the representativenessof any sampleX of N mammals
in termsof the distancebetweenthe bestfitting Gaus-
sian for the sample(meanm, covarianceS/N) and the
bestfitting Gaussianfor the setof all mammals(mean
µ, covarianceV). Figure3 illustratesthis graphically, by
plotting one-standard-deviation contoursfor threesam-
plesthatvary in how representative they areof thesetof
all mammals.Observe that the morerepresentative the
sample,the greaterthe overlap betweenits best-fitting
Gaussianandthebest-fittingGaussianfor thewholeset.

Similarity-based models. Oshersonet al. (1990) re-
portpairwisesimilarity judgmentsfor theanimals,but to
constructasimilarity-basedmodelof this representative-
nesstask,we needto definea setwisemeasureof simi-
larity betweenany sampleof threeanimalsandthesetof
all mammals.The similarity-coveragemodelproposed
by Oshersonet al. definesthis quantity as the sum of
eachcategory instance’s maximalsimilarity to thesam-
ple: R� X 	 hM �>
 ∑ j maxi sim� i 	 j � , where j rangesover
all mammalsandi rangesoverjustthosein thesampleX.
A moretraditionalsimilarity-basedmodelmight replace
the maximumwith a sum: R� X 	 hM ��
 ∑ j ∑i sim� i 	 j � .
Oshersonet al. (1990)considerbothmax-similarityand
sum-similaritymodelsbut favor theformerasit is more
consistentwith their phenomena.However, thereseems
to be little a priori reasonto prefermax-similarity, and
indeedmostsimilarity-basedmodelsof classificationare
closerto sum-similarity, soweconsiderbothhere.

Other models. We alsocomparethe predictionsof a
simple likelihoodmodel,which equatesrepresentative-
nesswith P � X � hM � , andSloman’s (1993) feature-based
model. Heit (1998)alsopresenteda Bayesianmodelof
category-basedinduction tasks,but becausehis model
dependsheavily onthechoiceof priors,it doesnotmake
strongquantitativepredictionsthatcanbeevaluatedhere.

Results. Figure 3 plots the argument strengthjudg-
ments for 45 argumentsversusthe representativeness
predictions of the probabilistic and similarity-based
models. Both the Bayesianandmax-similaritymodels
predictthedatareasonablywell (r 
 0� 80 vs. r 
 0� 88),
with no significant differencebetweenthem (p ?@� 2).
Neitherof thesemodelshasany free numericalparam-
eters.With onefreeparameter, the feature-basedmodel
performsslightly worse(r 
 0� 71). Interestingly, both
the likelihoodandsum-similaritymodelsshow a weak
negativecorrelationwith thedata(r 
��+� 31, r 
��A� 26).
This discrepancy directly embodiesthe insight of Fig-
ure 1: high likelihoodcanyield low representativeness
whenthesampleis tightly clusterednearthemean,asin
thesampleof

�
horse	 cow 	 rhino� (ellipseC in Figure3).

Sum-similarityperformsaspoorlyaslikelihoodbecause
it is essentiallya nonparametricestimateof likelihood;
likewise,max-similarityperformswell becauseit corre-
lateshighly with Bayesianrepresentativeness.

Discussion
Overall, the Bayesianmodelsprovide the mostsatisfy-
ing accountof thesetwo datasets.On thecoinflip data,
notonly doesBayesobtainthehighestcorrelation,but it
doessowith theminimalnumberof freeparameters.On
theanimalsdata,Bayesobtainsacorrelationcompetitive
with the bestof the othermodels,max-similarity, even
thoughit is basedonlessthanhalf asmuchinputdata(20
MDS coordinatesversus45 raw similarity judgments)
andmaybehinderedby informationlost in theMDS pre-
processingstep.Most importantly, theBayesianmodels
are basedon a rationalanalysis,which provides a sin-
gleprincipleddefinitionof representativenessapplicable
acrossthe two quite differentdomainsof coinflips and
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Figure3: Modeling representativenessfor setsof mammals.Ellipsesin theMDS spaceof animals(left) markone-
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�
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�
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�
horse	 cow 	 rhino� , C).

Scatterplots(right) comparestrengthjudgmentsfor 45argumentswith thepredictionsof four models(seetext).

animals. In contrast,the similarity-basedmodelshave
no rationalgroundingand take on very different forms
in thetwo domains.They achieve high correlations,but
only throughthe introductionof multiple free parame-
ters,suchasthefeatureweightson thecoin flip data,or
adhocassumptions,suchasthechoiceof max-similarity
over sum-similarityon the animal data. On the other
hand,similarity-basedmodelsdo have theadvantageof
requiringonly simplecomputations.ThusbothBayesian
andsimilarity-basedmodelsmayhave somethingto of-
fer, but at different levels of analysis. Similarity may
provide a reasonableway to describethe psychologi-
cal mechanismsof representativeness,while a Bayesian
analysismay provide the bestexplanationof why those
mechanismswork the way they do: why different fea-
turesof sequencesareweightedasthey arein thecoinflip
example,or why max-similarityprovidesa bettermodel
for inductive reasoningthandoessum-similarity.

Conclusion
We have argued that representativenessis best under-
stoodasa Bayesiancomputation,ratherthanasa judg-
mentof similarity or likelihood.Ouranalysismakespre-
ciseonecoresenseof representativeness– theextent to
whichsomethingis agoodexampleof acategoryor pro-
cess– andexposesits underlyingrationalbasis. Ratio-
nal modelshave beensuccessfullyappliedto a number
of cognitive capacities(Shepard,1987;Anderson,1990;
Oaksford& Chater, 1998)but not previously to analyz-
ing representativeness,which is traditionally thoughtof
asanalternativeto normativeprobabilisticjudgment.By
clarifying therelationbetweenour intuitivesenseof rep-
resentativenessandnormativeprinciplesof statisticalin-
ference,our analysismay leadto a betterunderstanding
of thoseconditionsunderwhich humanreasoningmay
actuallyberationalor closeto rational,aswell asthose
situationsin which it truly deviatesfrom arationalnorm.
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