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Abstract

Representatenessis a centralexplanatoryconstructin

cognitive sciencebut suffersfrom thelack of aprincipled
theoreticalaccount. Herewe presenta formal definition
of onesenseof representatieness- whatit meanso be
a good exampleof a processor catgory in the context

of Bayesianinference. This analysisclarifies the rela-
tion betweerrepresentatienessasan intuitive statistical
heuristicandnormatve principlesof inductive inference.
It alsoleadsto strongquantitatve predictionsaboutpeo-
ple’s judgments which comparefavorably to alternatve
accountdasednlik elihoodor similarity whenevaluated
on datafrom two experiments.

Why do peoplethink that Linda, the politically ac-
tive, single, outspolen, and very bright 31-yearold, is
morelik ely to beafeministbanktellerthanto beabank-
teller, eventhoughthis is logically impossibleWhy do
we think that the sequence@HTHT is more likely than
the sequenceéiHHHH to be producedby flipping a fair
coin, eventhoughboth areequallylikely? The standard
answerin cognitive psychology(Kahnemant Tversky,
1972)is thatour brainsaredesignedo judge“represen-
tativeness”notprobability: Lindais morerepresentatie
of feministbanktellerghanof banktellersandHHTHT is
morerepresentatie of flipping afair coin thanis HHHHH,
despiteanything thatprobabilitytheorytells us.

Not only errorsin probabilisticreasoningput numer
ousotherphenomenaf catgyorization,comparisonand
inferencehave beenattributedto the influenceof repre-
sentatvenesgor prototypicality or “goodnessof exam-
ple”; Mervis & Rosch,1981; OshersonSmith, Wilkie,
Lopez,& Shafir 1990;Rips, 1975). However, a princi-
pled accountof representatienesshasnot beeneasyto
comeby. Its leadingproponentgKahnemar& Tversky,
1996; Mervis & Rosch,1981) have assertedhat rep-
resentatienessshouldbe definedonly operationallyin
termsof peoples judgmentsana priori, analyticdefini-
tion neednot be given. Critics have counteredhat this
conceptis too vagueto sene asan explanationof intu-
itive probabilityjudgment(Gigerenzer1996).

This paperpresentsa framework for constructingra-
tional modelsof representatenesshasecn a Bayesian
analysisof what makesan obsenation a goodexample
of a category or process. The goal is to identify pre-
cisely one senseof representatenessand shov that it
hasa rationalbasisin normatize principlesof inductive

reasoning. We will first point out someshortcomings
of previous accountsbasedon likelihood or similarity,
andshav how a Bayesiamapproackcanovercomethose
problems.We will thencomparehe quantitatve predic-
tions of Bayesian ik elihood, and similarity modelson
two setsof representatienesgudgments.

Previous approaches

Lik elihood. In trying to relateintuitions aboutrepre-
sentatvenesgo rational statisticalinferencesa natural
startingpoint is the conceptof likelihood. Let d denote
someobsened data,suchasa sequencef coin tosses,
and h denotesome hypothesisaboutthe sourceof d,
suchasflipping a fair coin. The probability of observ-
ing d giventhath is true, P(d|h), is calleda likelihood.
Let R(d, h) denoterepresentatieness- how representa-
tive theobsenationd is of thegeneratie processn h.

Gigerenze®& Hoffrage(1995)have proposedhatrep-
resentatienessto the extentthatit canbe definedrig-
orously is equvalentto likelihood: R(d,h) = P(d|h).
This proposais appealingn that,otherfactorsaside the
morefrequentlyh leadsto observingd, the morerepre-
sentatve d shouldbeof h. It is alsoconsistentvith some
classicerrorsin probability judgment,suchasthe con-
junctionfallagy: apersonis almostcertainlymorelik ely
to matchLinda’sdescriptiorgiventhatsheis abankteller
andafeministthangivenonly thatsheis a bankteller

While likelihoodandrepresentatienesseenrelated,
however, they arenot equivalent. Two obsenationswith
equallikelihoodmaydiffer in representatenessKnow-
ing that HHHHH and HHTHT are equallylikely to be pro-
ducedby a fair coin doesnot changeour judgmentthat
the latter is the more representatie outcome. Tversky
& Kahneman(1983)provide several examplesof cases
in which a morerepresentatie outcomeis actuallyless
likely. Any sequencef fair coinflips, suchasTHHHTHT,
is lesslikely thanone of its subsegencesuchasH or
HHH, but may easilybe morerepresentatie. More color
fully, “being divorcedfour times”is morerepresentadie
of Hollywood actressethanis “voting democratic” but
theformeris certainlylesslikely.

Figure 1 illustratesa simple version of the dissoci-
ation betweenrepresentatenessand likelihood. Each
panelshavs a sampleof threepoints from a Gaussian
distribution. With independensampling thetotal likeli-
hoodof asampleequalgheproductof thelik elihoodsfor
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Figurel: Givenanormaldistribution,theleft samplehas
greatelflik elihoodbut theright is morerepresentatie.

eachitem in the sample.Thusthe left samplehasmuch
greaterlikelihood,becausesachpoint is muchcloserto
the peakof the distribution thanin theright sample.Yet
themorespread-ousampleontheright seemsnorerep-
resentatie. We testedthis intuition in a survey of 138
Stanfordundegraduates.They were first shavn a nor-
mally distributed setof thirty “widgets” producedby a
factory The widgetswere simple dravings resembling
nutsor bolts,varyingonly in their sizes.They werethen
shown threedifferentsamplesgachwith threewidgets,
andasledto rateon a scaleof 1-10 how representatie
eachsamplewasof thewidgetsproducedy thisfactory
Eachsamplecontaineda pointatthemeanof theoriginal
distribution, andpointsat z = +2.85 (“broad sample”),
z=+1 (“intermediatesample”),or z= +0.05 (“narrow
sample”). The intermediatesample with a standardie-
viation similar to the population received a significantly
higherratingthandid the muchmorelikely narrov sam-
ple(7.1vs.5.2,p < .05). Thebroadsamplewith lowest
likelihoodof all, alsoreceved a lower rating (6.9) than
theintermediatesample put not by a significantmamgin.

We also testedwhetherintermediate-rangsamples
are more representatie for naturalcateyories,usingas
stimuli black-and-whitepicturesof birds. In a design
parallelto the widget study 135 different Stanfordun-
demgraduatesaw threesamplesof birds, eachcontain-
ing three members,and rated how representatie they
wereof birdsin general.Thesamplesonsistedf either
threerobins(“narrow”); arobin, aneagle,anda seagull
(“intermediate”); or a robin, an ostrich, and a penguin
(“broad”). Although the robinswereindividually rated
as more representate than the other birds (by a sepa-
rate group of 100 subjects) the setof threerobinswas
consideredhe leastrepresentatie of the threesamples.
As with the widgets,the intermediatesamplewasrated
morerepresentatee (6.3) thaneitherthe narrav (5.1) or
broad(5.3) samplegp < .05 for bothdifferences).

For naturalcategoriesaswell asfor the artificial wid-
gets,a setof representatie examplesturnsout notto be
the mostrepresentatie setof examples. Samplelik eli-
hood,becausét is merelythe productof eachexamples
individual likelihood, cannotcapturethis phenomenon.
At best, then, likelihood may be only one factor con-
tributing to the computatiorof representatieness.

Similarity. Mostattemptgo explicatethe mechanisms
of representatieness,including that of Kahneman&
Tversky (1972),rely notonlik elihoodbut on somesense

of similarity. Thatis, anobsenationd is representate
of a catgyory or processh to the extentthatit is similar
to thesetof obsenrationsh typically generates.
Similarity seemsto avoid someof the problemsthat
likelihood encounters HHTHT may be more representa-
tive of a fair coin thanHHHHH becausét is moresimilar
on averageto other coin flip sequenceshasedon such
featuresasthe numberof headsor the numberof alter
nations.Lik ewise,someonavho hasbeendivorcedfour
timesmaybemoresimilarto theprototypicalHollywood
actressthan someonewho votesdemocratic,if marital
statusis weightedmoreheavily thanpolitical affiliation
in computingsimilarity to Hollywoodactresses.
However, the explanatorypower of a similarity-based
accounthingeson beingableto specifywhatmakestwo
stimuli more or lesssimilar, what the relevant features
areandhow arethey weighted.Similarity unconstrained
is liable to leadto circularexplanationshaving hadmul-
tiple divorcesis more representatie of Hollywood ac-
tressedbecausenarital statuss morehighly weightedin
computingsimilarity to Hollywood actressedyut why is
marital statusso highly weighted,if not becauséaving
multiple divorcesis sotypical of Hollywoodactresses?
Equatingrepresentatienesswith similarity alsoruns
into a problemwhen evaluating the representatieness
of a setof objects,asin Figure 1. Similarity is usu-
ally definedas a relation betweenpairs of stimuli, but
herewe requirea judgmentof similarity betweentwo
setsof stimuli, the sampleandthe population. It is not
immediatelyohbvious how bestto extendsimilarity from
apairwiseto asetwisemeasureTheindividual elements
of the left sampleare certainly more similar to the av-
eragememberof the populationthan are the elements
of theright sample.Theleft samplealsocomescloserto
minimizingtheaveragedistancebetweerelementof the
populationandelementof the sample.If similarity be-
tweensetsis definedaccordingo oneof thesemeasures,
it will fail to matchup with representatieness.
Finally, and most problematicfor our purposesere,
a definition in termsof similarity fails to elucidatethe
rational basisof representatieness,and thus brings us
no closerto explainingwhenandwhy representatieness
leadsto reasonablstatisticainferencesHencewe seem
to beleft with two less-than-perfeaptionsfor defining
representateness:the simple, rational, but clearly in-
sufficient conceptof likelihood,or the moreflexible but
notoriouslyslipperyconceptof similarity.

A Bayesiananalysis

In this sectionwe presenta Bayesiananalysisof repre-
sentatvenesghataddressesomeof the shortcomingof
the likelihood and similarity proposals.As with likeli-
hood, Bayesianrepresentatienesstakes the form of a
simpleprobabilisticquantity whichin factincludedlik e-
lihood as one component. But like the similarity ap-
proach,t canaccountor dissociation®f representatie-
nessandlik elihood,whena lessprobablefeatureof the
stimuli is alsomorediagnosticof theprocessr catgory
in question.Moreover, it appliesjust aswell to evaluat-



ing therepresentatenesof asetof examplege.g.Figure
1) asit doesto individual examples.

Our notionof a“good example”is definedin thecon-
text of aBayesiarinductive inferencetask.As above, let
d denotesomeobsered data,andlet # = {hy,...hn}
denotea setof n hypothesegassumedo be mutuallyex-
clusive and exhaustve) that might explain the obsened
data.For eachh;, we requireboththelikelihoodP(d|h;)
andaprior probability, P(h;), whichexpresseshedegree
of beliefin h; befored is obsered. Let hj = {h; € # :
j # 1} denotethe negation of hypothesish;, the asser
tion thatsomehypothesisotherthanh; is thetrue source
of d. Thenwe defineour measureof representateness
R(d, h;) to bethelogarithmof thelikelihoodratio

P(d[hi)
P(dlhi)”

This definition is motivatedby Bayes’rule, which pre-
scribesadegreeof beliefin hypothesid; afterobserving
d givenby the posteriorprobability

P(dlhi)P(h)

DefiningtheposterioroddsO(h;|d) = P(hi|d)/P(hi|d) =
P(hi|d)/(1 — P(hj|d)), and the prior odds O(h;) =
P(hi)/(1—P(h;)), we canwrite Bayes'rule in theform:

logO(hj|d) = logL(d|h;) +1ogO(hy). (3)

Equation 3 shovs why the log likelihood ratio,
logL(d|h;), providesa naturalmeasureof how goodan
exampled is of h;: it indicatesthe extentto which ob-
servingd increaser decreaseshe posteriorodds of
h; relative to the prior odds. Researcher@n statistics
(Good, 1950), artificial intelligence (Pearl, 1988), and
philosoply of science(Fitelson,2000) have previously
consideredogL (d|h;) asthebestmeasurdor theweight
of evidencethatd providesfor h;, becausé captureshe
uniquecontritution thatd makesto our beliefin h; inde-
pendentlyof all otherknowledgethatwe have (reflected
in P(hy)).

To computeR(d, hy) in the presencef morethanone
alternatve hypothesiswe expressit in theform

P(d]h)
hyes P(INg)P(hj i)

L(d[h) =

(1)

P(hi|d) =

R(d,hi) = log

(4)

P(hj|h) is the prior probability of h; giventhath; is not
the true explanationof d: 0 wheni = j andP(h;)/(1—
P(h)) otherwise. Equation4 shovsthatd is representa-
tive of h; to theextentthatits likelihoodunderh; exceeds
its averagdik elihoodunderalternatve hypotheses.

To illustratethe analysisconcretely considerthe sim-
ple caseof two coinflip sequencesiHHHH and HHTHT.
Unlike the likelihood model, we cannotcomputehow
representagie an obsenation is of a hypothesiswith-
out specifying the alternatve hypothesesthat an ob-
sener might consider In the interestsof simplic-
ity, we considerjust three relevant hypothesesabout

the origins of HHHHH and HHTHT: a fair coin (hg), a
two-headedcoin (hrt), and a weightedcoin (hy) that
comesup headswith probability 3/5. The likelihoods
of the two sequencesinder thesehypothesesare, for
the fair coin, P(HHHHH|hg ) = P(HHTHT|hg) = (1/2)° =
0.03125; for the two-headedcoin, P(HHHHH|ht) = 1
while P(HHTHT|ht) = 0; and for the weighted coin,
P(HHHHH|hy) = (3/5)° = 0.0778while P(HHTHT|hy ) =
(3/5)3(2/5)? = 0.0346. For concretenesswe choose
specificprior probabilitiesfor thesenypothesesP(hg ) =
0.9, P(hy) = 0.05, and P(hy) = 0.05.  Substi-
tuting these numbers into Equation 4, we have

_ 0.03125 _

R(HHHHH, he ) = 100 17555751 00778000501 — — 285
: _ 0.03125 _
while R(HHTHT,hr) = 100 550551 0034600501 —

0.59. This result,that HHTHT is more representatie of
afair coin thanHHHHH, accordswith intuition andholds
regardlesf theprior probabilitieswe assigrto thethree
alternatve hypotheses. In a later section,we go be-
yond a qualitatve reconstructiorof intuitions to testa
guantitatve model of representatenessjudgmentsfor
sequencesf coinflips.

The Bayesiamapproachalsoaccountdor casesvhere
a samplewith lower likelihood appearsmore repre-
sentatve. For instance, P(HHTHTHTTH|hg) is strictly
lower than either P(HHTHT|hg) or P(HHHHH|hg), but
HHTHTHTTH is no lessrepresentatie than HHTHT. The
Bayesianaccountalso offers an intuitively compelling
definition of representatenessfor a set of examples,
suchas the widgetsin Figure 1. We demonstrateby
computingthe representatienessfor a sampleX from
a Gaussiarpopulationh;. Let {xq,...,xn} betheN ex-
amplesin X, mbethemeanof X, andS= ¥;(x —m)? the
sum-of-squared.et h; have meanu andvariances?. We
takethehypothesispace# toincludeall possibleGaus-
siandistributionsin onedimension- eacha concevable
alternateexplanationfor the sampleX. BecauseX is
an uncountablyinfinite set,the sumin the denominator
of Equation4 becomesan integral. Assumingan unin-
formative Jefreys prior on p,o (Equation3 of Minka,
1998),our expressiorfor Bayesiarrepresentatienessn
Equation4 thenreducego

R(X,h;) = NlogS— é IN(m=p?+5], (5

plusatermthatdepend®nly on N ando?.

Equation5 is maximizedwhen m = p and S/N =
0?, that is, when the meanand varianceof the sam-
ple X matchthe meanand varianceof the population
h;. Thisresultis intuitive, andit accountgor why peo-
ple preferredintermediatesamplesof widgetsor birds
over broador narrav samplesin the surweys described
above: the NlogSterm penalizesarrover samplesand
the —S/0? penalizesbroadersamples. Yet this result
is also not particularly surprising. More interestingly
Equation5 gives a generalmetric for scoringthe rep-
resentatienesof any samplefrom a Gaussiardistribu-
tion, which we will testquantitatvely against peoples
judgmentsn thefollowing section.



Quantitati ve modeling

In this section,we presentguantitatve modelsof repre-
sentatve judgmentsfor two kinds of stimuli: sequences
of coin flips and setsof animals. For eachdataset, we
comparethe predictionsof Bayesian likelihood-based,
andsimilarity-basednodels.

Coin flips

Methods. 278 Stanfordundegraduatesatedthe rep-
resentatienessof four differentcoin flip sequencesor
eachof four hypotheticalgeneratre processesjnderthe
cover storyof helpinga casinodelug anew line of gam-
bling machines. The sequencesvere d; = HHTHTTTH,
d, = HTHTHTHT, d3 = HHTHTHHH, and d4 = HHHHHHHH.
The generatie processesvereh; = “A fair coin”, hy =
“A coin thatalwaysalternateheadsandtails”, hg = “A
cointhatmostly comesup heads”,andh, = “A coin that
alwayscomesup heads”. The ordersof both sequences
and hypothesesvererandomizedacrosssubjects.Rep-
resentatienesgudgmentsveremadeon a scaleof 1-7.

Bayesianmodel. While peoplecould constructan ar
bitrarily large hypothesisspacefor this task, we make
the simplifying assumptiorthat their hypothesisspace
canbeapproximatedby justthefour hypotheseshatthey
areasledto make judgmentsabout.We constructedim-
ple probabilisticmodelsfor eachhypothesigh; to gener
atethe necessaryikelihoodsP(d;|h;). Priorsfor all hy-
pothesesvereassumedo be equal. To modelh;, “a fair
coin”, all likelihoodswere setequalto their true values
of 1/28. To modelhs, “mostly heads”,andhy, “always
heads”,we usedbinomial distributions with p = 0.85
and p = 0.99, respectiely. In somesensethesep val-
uesrepresenfree parametersf the model,but their val-
uesarestronglyconstrainedy the meaningof thewords
“mostly” and“always”. Their exactvaluesarenot cru-
cial to the model’s performanceaslong as“always” is
taken to meansomethinglike “almost but not quite al-
ways” (i.e. p < 1.0). To modelhy, “always alternates
headsandtails”, we usedabinomialdistribution overthe
sev/en possiblestatetransitionsin eachsequenceagain
with “always”translatednto probabilityasp = 0.99. All
modelpredictionswerethengivenby Equation4.

Lik elihood model. This model treatsrepresentatie-
nesgudgmentssimply asP(d;|h;), asspecifiedabore.

Similarity model. We defined a simple similarity-
basedmodel in terms of two intuitively relevant fea-
turesfor comparingsequencesthe numberof headsin
eachsequencandthe numberof alternationsn eachse-
guence. Let a;j be the numberof headsin sequencg,
andp; bethenumberof alternationsThenthesimilarity
of sequenced; andd; is definedto be

sim(di, dj) = exp (—wq o — o j| —wg|Bi —Bj|), (6)

wherew, andwg aretheweightsgivento thesetwo fea-
tures. To computesimilarity betweena sequencenda
generatindiypothesiswe constructa prototypefor each

hypothesisbasedon the meanvaluesof a and 3 over
thewholedistribution of sequencegeneratedby thathy-
pothesis.For example,for hy, a = 4 and3 = 7; for hs
(again assuming'mostly” meanswith probability 0.85),
0~ 6.8 andp ~ 1.8. Lastly, we definethe represen-
tativenessof sequence for hypothesisj asR(d;,h;j) =
sim(d;, hj)/ Sksim(d;, he). The dimensionalweightswy
andwg arefree parametersptimizedto fit thedata,giv-
ingwg = 1,wg =0.4.

Results. To compensatéor nonlineartransformations
that might affect the 1-7 rating scaleusedby subjects,
the predictionsof eachmodelwerefirst transformedac-
cordingto apower functionwith apowery choserto op-
timize eachmodels fit, andthenmappedontothe same
interval spannedy the data. This givesboththe lik eli-
hoodmodelandthe Bayesiarmodelonefree parameter
plus two constrainecparametergcorrespondingo the
meaningf “mostly” and“always”), while the similar-
ity modelhasthreefree parametergwy, wg, andy) and
the sametwo constrainecharametersAll threemodels
correlatehighly with subjects’representafienesgudg-
ments, althoughthe Bayesianmodel hasa slight edge
with r = 0.94, versus0.87 for the likelihoodmodeland
0.92 for the similarity model. Figure2 present@anitem-
by-item analysis,shaving thatthe Bayesianmodelcap-
turesvirtually all of the salientpatterndn the data.

Animals

Methods. We useddatareportedby OshersonSmith
etal. (1990; Tables3 and4) in a study of cateyory-
basedinduction. They asled one group of subjectsto
judgepairwisesimilaritiesfor a setof 10 mammalsand
a secondgroup of subjectsto judgethe strengthsof 45
amgumentsof the form {x; haspropertyP, x, hasprop-
erty P, x3 haspropertyP, thereforeall mammalshave
propertyP}, wherex, x, andxs arethreedifferentkinds
of mammalsandP is a blankbiological predicate.Such
judgmentsof argumentstrengthare not the samething
asjudgmentsof representatienesshput for now we take
them as a reasonableroxy for how representatie the
sampleX = {x1, %2, X3} is of thesetof all mammals.

Bayesianmodel. We assumehat peoples hypothesis
spacedncludesthecatayory of all mammalghy), aswell
asaninfinite numberof alternatve hypothesesFor sim-
plicity, we model all hypothesesas Gaussiandistribu-
tionsin atwo-dimensionafeaturespaceobtainedrom a
multidimensionakcaling(MDS) analysisof the similar
ity judgmentsn Oshersoretal. (1990). Thisallowsusto
apply essentiallythe sameanalysisusedin the previous
sectionto computethe representatienessof a sample
from a Gaussiardistribution (Equation5), andalsopar
allels the original approachto modelingcategory-based
inductionof Rips(1975). The MDS spacefor animalsis
shavnin Figure3. Thelargegrayoval indicatesheone-
standard-déation contourline of hy, which we take to
bethe bestfitting Gaussiardistribution for the setof all
ten mammals. We assumehe set A of alternatve hy-
pothesesncludesall Gaussiansn this two-dimensions
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Figure 2: Representatenesgudgmentsfor coin flip sequencesEachpanelshons subjects’meanjudgmentsand
the Bayesianmodel predictionsfor the representatenessof one sequencavith respecto four differentgenerating
hypothesesh; = “A fair coin”, h, = “A coin thatalwaysalternatesieadsandtails”, hs = “A coin thatmostly comes

up heads”andh, = “A cointhatalwayscomesup heads”.

spaceandwe again usetheuninformatie Jefreys’ prior

P(h) (Minka, 1998; Equation3). How representate a

sampleX (e.g.{horsecow,squirrel}) is of all mammals
canthenbe computedfrom a multidimensionalversion
of Equation5 (ignoringtermsequalfor all samples):

R(X,hm) = Nlog|S|—N(m—p)™V-(m—p)

—tracgSV 1), (7)
wherem is the meanof X, S= 3;(x; —m)T(xi —m), X;
arethe MDS coordinateof examplei, N is the number
of examplesin X, andp andV arethe meanandcovari-
ancematrix of hy (Minka, 1998). Equation7 measures
the representatienessof ary sampleX of N mammals
in termsof the distancebetweenthe bestfitting Gaus-
sianfor the sample(meanm, covarianceS/N) andthe
bestfitting Gaussiarfor the setof all mammals(mean
I, covarianceV). Figure3illustratesthis graphically by
plotting one-standard-dgation contoursfor threesam-
plesthatvaryin how representatie they areof the setof
all mammals. Obsene that the more representatie the
sample,the greaterthe overlap betweenits best-fitting
Gaussiarandthe best-fittingGaussiarior thewhole set.

Similarity-based models. Oshersoret al. (1990)re-
port pairwisesimilarity judgmentgor theanimals but to
constructasimilarity-basednodelof this representatie-
nesstask,we needto definea setwisemeasureof simi-
larity betweerary sampleof threeanimalsandthe setof
all mammals. The similarity-coveragemodel proposed
by Oshersoret al. definesthis quantity as the sum of
eachcateyory instances maximalsimilarity to the sam-
ple: R(X,hy) = ¥;maxsim(i, j), where j rangesover
all mammalsandi rangesoverjustthosein thesampleX.
A moretraditionalsimilarity-basednodelmight replace
the maximumwith a sum: R(X,hy) = ¥; ¥;sim(i, j).
Oshersoretal. (1990)considerboth max-similarityand
sum-similaritymodelsbut favor the formerasit is more
consistenwith their phenomenaHowever, thereseems
to be little a priori reasonto prefermax-similarity and
indeedmostsimilarity-basednodelsof classificatiorare
closerto sum-similarity sowe considemothhere.

Other models. We also comparethe predictionsof a
simple likelihood model, which equategepresentatie-
nesswith P(X|hy), and Slomans (1993) feature-based
model. Heit (1998)also presentech Bayesianrmodel of
catgyory-basednduction tasks, but becausehis model
depend$eaily onthechoiceof priors,it doesnotmake
strongquantitate predictionghatcanbeevaluatechere.

Results. Figure 3 plots the agumentstrengthjudg-
mentsfor 45 argumentsversusthe representatieness
predictions of the probabilistic and similarity-based
models. Both the Bayesianand max-similarity models
predictthe datareasonablyvell (r = 0.80vs. r = 0.88),
with no significant differencebetweenthem (p > .2).
Neitherof thesemodelshasary free numericalparam-
eters.With onefree parameterthe feature-basedodel
performsslightly worse(r = 0.71). Interestingly both
the likelihood and sum-similaritymodelsshav a weak
neggativecorrelationwith thedata(r = —.31,r = —.26).
This discrepang directly embodiesthe insight of Fig-
ure 1: high likelihood canyield low representatieness
whenthe samplés tightly clusterechearthemean asin
thesampleof {horsecaow, rhino} (ellipseC in Figure3).
Sum-similarityperformsaspoorly aslikelihoodbecause
it is essentiallya nonparametriestimateof likelihood;
likewise, max-similarityperformswell becauset corre-
lateshighly with Bayesiarrepresentatieness.

Discussion

Overall, the Bayesianmodelsprovide the most satisfy-
ing accountof thesetwo datasets.On the coinflip data,
notonly doesBayesobtainthe highestcorrelation but it
doessowith theminimal numberof free parametersOn
theanimalsdata,Bayesobtainsa correlationcompetitve
with the bestof the other models,max-similarity even
thoughit is basednlessthanhalf asmuchinputdata(20
MDS coordinatesversus45 raw similarity judgments)
andmaybehinderedoy informationlostin theMDS pre-
processingstep. Mostimportantly the Bayesiammodels
are basedon a rational analysis,which provides a sin-
gle principleddefinition of representatenesspplicable
acrossthe two quite differentdomainsof coinflips and
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Figure3: Modeling representatienessor setsof mammals.Ellipsesin the MDS spaceof animals(left) mark one-
standard-daation contoursfor the setof all mammals(thick), a representatie sample({horsechimp sea}, A), a
somavhatrepresentatie sample({horsemouserhino}, B), andalessrepresentatie sample({horsecow, rhino}, C).
Scattemplots(right) comparestrengthjudgmentdor 45 argumentswith the predictionsof four models(seetext).

animals. In contrast,the similarity-basedmodelshave

no rational groundingand take on very differentforms

in thetwo domains.They achiere high correlations put

only throughthe introductionof multiple free parame-
ters,suchasthefeatureweightson the coinflip data,or

adhocassumptionssuchasthechoiceof max-similarity
over sum-similarity on the animal data. On the other
hand,similarity-basednodelsdo have the advantageof

requiringonly simplecomputationsThusbothBayesian
andsimilarity-basednodelsmay have somethingo of-

fer, but at different levels of analysis. Similarity may
provide a reasonablevay to describethe psychologi-
cal mechanismsf representatienesswhile a Bayesian
analysismay provide the bestexplanationof why those
mechanismsvork the way they do: why differentfea-
turesof sequenceareweightedasthey arein thecoinflip

example,or why max-similarityprovidesa bettermodel
for inductive reasoninghandoessum-similarity

Conclusion

We have argued that representatienessis bestunder
stoodasa Bayesiancomputationyatherthanasa judg-
mentof similarity or likelihood.Our analysismakespre-
ciseonecoresenseof representatieness- the extentto
which somethings agoodexampleof a cateyory or pro-
cess— andexposests underlyingrational basis. Ratio-
nal modelshave beensuccessfullyappliedto a number
of cognitive capacitie{Shepard1987;Anderson,1990;
Oaksford& Chater 1998)but not previously to analyz-
ing representatienesswhich is traditionally thoughtof
asanalternatve to normatie probabilisticjudgment.By
clarifying therelationbetweerour intuitive senseof rep-
resentatienessandnormatie principlesof statisticalin-
ferenceour analysismay leadto a betterunderstanding
of thoseconditionsunderwhich humanreasoningnay
actuallybe rationalor closeto rational,aswell asthose
situationsn whichit truly deviatesfrom arationalnorm.
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