
PNUTS: Yahoo!’s Hosted Data Serving Platform

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver and Ramana Yerneni

Yahoo! Research

ABSTRACT
We describe PNUTS, a massively parallel and geographi-
cally distributed database system for Yahoo!’s web applica-
tions. PNUTS provides data storage organized as hashed
or ordered tables, low latency for large numbers of con-
current requests including updates and queries, and novel
per-record consistency guarantees. It is a hosted, centrally
managed, and geographically distributed service, and uti-
lizes automated load-balancing and failover to reduce oper-
ational complexity. The first version of the system is cur-
rently serving in production. We describe the motivation
for PNUTS and the design and implementation of its table
storage and replication layers, and then present experimen-
tal results.

1. INTRODUCTION
Modern web applications present unprecedented data man-

agement challenges, even for relatively “simple” tasks like
managing session state, content meta-data, and user-generated
content such as tags and comments. The foremost require-
ments of a web application are scalability, consistently good
response time for geographically dispersed users, and high
availability. At the same time, web applications can fre-
quently tolerate relaxed consistency guarantees. We now ex-
amine these requirements in more detail.

Scalability. For popular applications such as Flickr and
del.icio.us, the need for a scalable data engine is obvious [4].
We want not only architectural scalability, but the ability
to scale during periods of rapid growth by adding resources
with minimal operational effort and minimal impact on sys-
tem performance.

Response Time and Geographic Scope. A fundamen-
tal requirement is that applications must consistently meet

1Author emails: {cooperb, ramakris, utkarsh, silberst, plb,
nickpuz, dweaver, yerneni}@yahoo-inc.com
Hans-Arno Jacobsen’s current affiliation: University of
Toronto, jacobsen@eecg.toronto.edu

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08,August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Yahoo!’s internal SLAs for page load time, placing stringent
response time requirements on the data management plat-
form. Given that web users are scattered across the globe,
it is critical to have data replicas on multiple continents for
low-latency access. Consider social network applications—
alumni of a university in India may reside in North America
and Europe as well as Asia, and a particular user’s data may
be accessed both by the user from his home in London as
well as by his friends in Mumbai and San Francisco. Ideally,
the data platform should guarantee fast response times to
geographically distributed users, even under rapidly chang-
ing load conditions brought on by flash crowds, denial of
service attacks, etc.

High Availability and Fault Tolerance. Yahoo! ap-
plications must provide a high degree of availability, with
application-specific trade-offs in the degree of fault-tolerance
required and the degree of consistency that is deemed ac-
ceptable in the presence of faults; e.g., all applications want
to be able to read data in the presence of failures, while some
insist on also being able to write in the presence of failures,
even at the cost of risking some data consistency. Downtime
means money is lost. If we cannot serve ads, Yahoo! does
not get paid; if we cannot render pages, we disappoint users.
Thus service must continue in the face of a variety of failures
including server failures, network partitions and the loss of
power in a co-location facility.

Relaxed Consistency Guarantees. Traditional database
systems have long provided us with a well-understood model
for reasoning about consistency in the presence of concur-
rent operations, namely serializable transactions [5]. How-
ever, there is a tradeoff between performance and availability
on the one hand and consistency on the other, and it has
repeatedly been observed that supporting general serializ-
able transactions over a globally-replicated and distributed
system is very expensive [17, 2, 1]. Thus, given our strin-
gent performance and availability requirements, achieving
serializability for general transactions is impractical. More-
over, based on our experience with many web applications
at Yahoo!, general transactions are also typically unneces-
sary, since these applications tend to manipulate only one
record at a time. For example, if a user changes an avatar,
posts new pictures, or invites several friends to connect, lit-
tle harm is done if the new avatar is not initially visible to
one friend, etc. (especially if such anomalies are rare).

Given that serializability of general transactions is inef-
ficient and often unnecessary, many distributed replicated
systems go to the extreme of providing only eventual con-

sistency [23, 12]: a client can update any replica of an object
and all updates to an object will eventually be applied, but
potentially in different orders at different replicas. However,
such an eventual consistency model is often too weak and
hence inadequate for web applications, as the following ex-
ample illustrates:

Example 1. Consider a photo sharing application that
allows users to post photos and control access. For simplicity
of exposition, let us assume that each user’s record contains
both a list of their photos, and the set of people allowed to
view those photos. In order to show Alice’s photos to Bob,
the application reads Alice’s record from the database, deter-
mines if Bob is in the access list, and then uses the list of
Bob’s photos to retrieve the actual photo files from a separate
serving store. A user wishes to do a sequence of 2 updates
to his record:

U1: Remove his mother from the list of people who can
view his photos

U2: Post spring-break photos
Under the eventual consistency model, update U1 can go to
replica R1 of the record, while U2 might go to replica R2.
Even though the final states of the replicas R1 and R2 are
guaranteed to be the same (the eventual consistency guaran-
tee), at R2, for some time, a user is able to read a state of
the record that never should have existed: the photos have
been posted but the change in access control has not taken
place.

This anomaly breaks the application’s contract with the
user. Note that this anomaly arises because replica R1 and
R2 apply updates U1 and U2 in opposite orders, i.e., replica
R2 applies update U2 against a stale version of the record.

As these examples illustrate, it is often acceptable to read
(slightly) stale data, but occasionally stronger guarantees
are required by applications.

1.1 PNUTS Overview
We are building the PNUTS system, a massive-scale, hosted

database system to support Yahoo!’s web applications. Our
focus is on data serving for web applications, rather than
complex queries, e.g., offline analysis of web crawls. We
now summarize the key features and architectural decisions
in PNUTS.

Data Model and Features PNUTS exposes a simple re-
lational model to users, and supports single-table scans with
predicates. Additional features include scatter-gather op-
erations, a facility for asynchronous notification of clients
and a facility for bulk loading.

Fault Tolerance PNUTS employs redundancy at multi-
ple levels (data, metadata, serving components, etc.) and
leverages our consistency model to support highly-available
reads and writes even after a failure or partition.

Pub-Sub Message System Asynchronous operations
are carried out over a topic-based pub/sub system called
Yahoo! Messsage Broker (YMB), which together with PNUTS,
is part of Yahoo!’s Sherpa data services platform. We chose
pub/sub over other asynchronous protocols (such as gos-
sip [12]) because it can be optimized for geographically dis-
tant replicas and because replicas do not need to know the
location of other replicas.

Record-level Mastering To meet response-time goals,
PNUTS cannot use write-all replication protocols that are
employed by systems deployed in localized clusters [8, 15].
However, not every read of the data necessarily needs to see
the most current version. We have therefore chosen to make
all high latency operations asynchronous, and to sup-
port record-level mastering. Synchronously writing to
multiple copies around the world can take hundreds of mil-
liseconds or more, while the typical latency budget for the
database portion of a web request is only 50-100 millisec-
onds. Asynchrony allows us to satisfy this budget despite
geographic distribution, while record-level mastering allows
most requests, including writes, to be satisfied locally.

Hosting PNUTS is a hosted, centrally-managed database
service shared by multiple applications. Providing data man-
agement as a service significantly reduces application devel-
opment time, since developers do not have to architect and
implement their own scalable, reliable data management so-
lutions. Consolidating multiple applications onto a single
service allows us to amortize operations costs over multi-
ple applications, and apply the same best practices to the
data management of many different applications. Moreover,
having a shared service allows us to keep resources (servers,
disks, etc.) in reserve and quickly assign them to applica-
tions experiencing a sudden upsurge in popularity.

1.2 Contributions
In this paper, we present the design and functionality of

PNUTS, as well as the key protocols and algorithms used to
route queries and coordinate the growth of the massive data
store. In order to meet the requirements for a web data plat-
form, we have made several fundamental—and sometimes
radical—design decisions:

• An architecture based on record-level, asynchronous
geographic replication, and use of a guaranteed message-
delivery service rather than a persistent log.

• A consistency model that offers applications transac-
tional features but stops short of full serializability.

• A careful choice of features to include (e.g., hashed
and ordered table organizations, flexible schemas) or
exclude (e.g., limits on ad hoc queries, no referential
integrity or serializable transactions).

• Delivery of data management as a hosted service.

We discuss these choices, and present the results of an
initial performance study of PNUTS. The first version of our
system is being used in production to support social web
and advertising applications. As the system continues to
mature, and some additional features (see Section 6) become
available, it will be used for a variety of other applications.

2. FUNCTIONALITY
In this section we briefly present the functionality of PNUTS,

and point out ways in which it is limited by our desire to
keep the system as simple as possible while still meeting the
key requirements of Yahoo! application developers. We first
outline the data and query model, then present the consis-
tency model and notification model, and end with a brief
discussion of the need for efficient bulk loading.

2.1 Data and Query Model
PNUTS presents a simplified relational data model to the

user. Data is organized into tables of records with attributes.
In addition to typical data types, “blob” is a valid data type,
allowing arbitrary structures inside a record, but not neces-
sarily large binary objects like images or audio. (We observe
that blob fields, which are manipulated entirely in applica-
tion logic, are used extensively in practice.) Schemas are
flexible: new attributes can be added at any time without
halting query or update activity, and records are not re-
quired to have values for all attributes.

The query language of PNUTS supports selection and pro-
jection from a single table. Updates and deletes must speci-
fiy the primary key. While restrictive compared to relational
systems, single-table queries in fact provide very flexible ac-
cess compared to distributed hash [12] or ordered [8] data
stores, and present opportunities for future optimization by
the system (see Section 3.3.1). Consider again our hypo-
thetical social networking application: A user may update
her own record, resulting in point access. Another user may
scan a set of friends in order by name, resulting in range
access. PNUTS allows applications to declare tables to be
hashed or ordered, supporting both workloads efficently.

Our system is designed primarily for online serving work-
loads that consist mostly of queries that read and write sin-
gle records or small groups of records. Thus, we expect most
scans to be of just a few tens or hundreds of records, and op-
timize accordingly. Scans can specify predicates which are
evaluated at the server. Similarly, we provide a “multiget”
operation which supports retrieving multiple records (from
one or more tables) in parallel by specifying a set of primary
keys and an optional predicate, but again expect that the
number of records retrieved will be a few thousand at most.

Our system, regrettably, also does not enforce constraints
such as referential integrity, although this would be very
desirable. The implementation challenges in a system with
fine-grained asynchrony are significant, and require future
work. Another missing feature is complex ad hoc queries
(joins, group-by, etc.). While improving query functionality
is a topic of future work, it must be accomplished in a way
that does not jeapardize the response-time and availability
currently guaranteed to the more “transactional” requests of
web applications. In the shorter term, we plan to provide an
interface for both Hadoop, an open source implementation of
MapReduce [11], and Pig [21], to pull data out of PNUTS for
analysis, much as MapReduce pulls data out of BigTable [8].

2.2 Consistency Model: Hiding the Complex-
ity of Replication

PNUTS provides a consistency model that is between the
two extremes of general serializability and eventual consis-
tency. Our model stems from our earlier observation that
web applications typically manipulate one record at a time,
while different records may have activity with different geo-
graphic locality. We provide per-record timeline consis-
tency: all replicas of a given record apply all updates to the
record in the same order. An example sequence of updates
to a record is shown in this diagram:

Update

v. 1.1v. 1.0 v. 1.2 v. 1.3 v. 2.0 v. 2.2v. 2.1

Insert InsertUpdate Update Delete

In this diagram, the events on the timeline are inserts, up-

dates and deletes for a particular primary key. The inter-
vals between an insert and a delete, shown by a dark line
in the diagram, represent times when the record is physi-
cally present in the database. A read of any replica will
return a consistent version from this timeline, and replicas
always move forward in the timeline. This model is im-
plemented as follows. One of the replicas is designated as
the master, independently for each record, and all updates
to that record are forwarded to the master. The master
replica for a record is adaptively changed to suit the work-
load – the replica receiving the majority of write requests for
a particular record becomes the master for that record. The
record carries a sequence number that is incremented on ev-
ery write. As shown in the diagram, the sequence number
consists of the generation of the record (each new insert is a
new generation) and the version of the record (each update
of an existing record creates a new version). Note that we
(currently) keep only one version of a record at each replica.

Using this per-record timeline consistency model, we sup-
port a whole range of API calls with varying levels of con-
sistency guarantees.

• Read-any: Returns a possibly stale version of the record.
However, unlike Example 1, the returned record is al-
ways a valid one from the record’s history. Note that
this call departs from strict serializability since with this
call, even after doing a successful write, it is possible
to see a stale version of the record. Since this call has
lower latency than other read calls with stricter guar-
antees (described next), it provides a way for the appli-
cation to explicitly indicate, on a per-read basis, that
performance matters more than consistency. For exam-
ple, in a social networking application, for displaying a
user’s friend’s status, it is not absolutely essential to get
the most up-to-date value, and hence read-any can be
used.

• Read-critical(required version): Returns a version
of the record that is strictly newer than, or the same as
the required version. A typical application of this call
is when a user writes a record, and then wants to read a
version of the record that definitely reflects his changes.
Our write call returns the version number of the record
written, and hence the desired read guarantee can be en-
forced by using a read-critical with required version

set to the version returned by the write.

• Read-latest: Returns the latest copy of the record that
reflects all writes that have succeeded. Note that read-

-critical and read-latest may have a higher latency
than read-any if the local copy is too stale and the sys-
tem needs to locate a newer version at a remote replica.

• Write: This call gives the same ACID guarantees as a
transaction with a single write operation in it. This call
is useful for blind writes, e.g., a user updating his status
on his profile.

• Test-and-set-write(required version): This call per-
forms the requested write to the record if and only if the
present version of the record is the same as required-

version. This call can be used to implement transac-
tions that first read a record, and then do a write to the
record based on the read, e.g., incrementing the value
of a counter. The test-and-set write ensures that two
such concurrent increment transactions are properly se-
rialized. Such a primitive is a well-known form of opti-

Tablet
controller

Tablet
controller

Region 1

broker
Message RoutersRouters

Region 2

Storage units Storage units

Figure 1: PNUTS system architecture

mistic concurrency control [5].

Our API, in contrast to that of SQL, may be criticized for
revealing too many implementation details such as sequence
numbers. However, revealing these details does allow the ap-
plication to indicate cases where it can do with some relaxed
consistency for higher performance, e.g., read-critical.
Similarly, a test-and-set write allows us to implement
single-row transactions without any locks, a highly desir-
able property in distributed systems. Of course, if the need
arises, our API can be packaged into the traditional BEGIN
TRANSACTION and COMMIT for single-row transactions, at the
cost of losing expressiveness. Note that our consistency
guarantees are somewhat different than traditional guaran-
tees such as serializable, repeatable read, read committed,
snapshot isolation and so on. In particular, we make no
guarantees as to consistency for multi-record transactions.
Our model can provide serializability on a per-record ba-
sis. In particular, if an application reads or writes the same
record multiple times in the same “transaction,” the appli-
cation must use record versions to validate its own reads and
writes to ensure serializability for the “transaction.”

In the future, we plan to augment our consistency model
with the following primitives:

• Bundled updates: Consistency guarantees for write op-
erations that span multiple records (see Section 6).

• Relaxed consistency: Under normal operation, if the
master copy of a record fails, our system has protocols
to fail over to another replica. However, if there are ma-
jor outages, e.g., the entire region that had the master
copy for a record becomes unreachable, updates cannot
continue at another replica without potentially violat-
ing record-timeline consistency. We will allow applica-
tions to indicate, per-table, whether they want updates
to continue in the presence of major outages, potentially
branching the record timeline. If so, we will provide au-
tomatic conflict resolution and notifications thereof. The
application will also be able to choose from several con-
flict resolution policies: e.g., discarding one branch, or
merging updates from branches, etc.

2.3 Notification
Trigger-like notifications are important for applications

such as ad serving, which must invalidate cached copies of
ads when the advertising contract expires. Accordingly, we
allow the user to subscribe to the stream of updates on a
table. Notifications are easy to provide given our underlying

pub/sub infrastructure (see Section 3.2.1), and thus have the
same stringent reliability guarantees as our data replication
mechanism.

2.4 Bulk Load
While we emphasize scalability, we seek to support impor-

tant database system features whenever possible. Bulk load-
ing tools are necessary for applications such as comparison
shopping, which upload large blocks of new sale listings into
the database every day. Bulk inserts can be done in parallel
to multiple storage units for fast loading. In the hash table
case, the hash function naturally load balances the inserts
across storage units. However, in the ordered table case,
bulk inserts of ordered records, records appended to the end
of the table’s range, or records inserted into already popu-
lated key ranges require careful handling to avoid hot spots
and ensure high performance. These issues are discussed
in [25].

3. SYSTEM ARCHITECTURE
Figure 1 shows the system architecture of PNUTS. The

system is divided into regions, where each region contains a
full complement of system components and a complete copy
of each table. Regions are typically, but not necessarily, ge-
ographically distributed. A key feature of PNUTS is the use
of a pub/sub mechanism for both reliability and replication.
In fact, our system does not have a traditional database log
or archive data. Instead, we rely on the guaranteed delivery
pub/sub mechanism to act as our redo log, replaying updates
that are lost before being applied to disk due to failure. The
replication of data to multiple regions provides additional
reliability, obviating the need for archiving or backups. In
this section, we first discuss how the components within a
region provide data storage and retrieval. We then examine
how our pub/sub mechanism, the Yahoo! Message Broker,
provides reliable replication and helps with recovery. Then,
we examine other aspects of the system, including query
processing and notifications. Finally, we discuss how these
components are deployed as a hosted database service.

3.1 Data Storage and Retrieval
Data tables are horizontally partitioned into groups of

records called tablets. Tablets are scattered across many
servers; each server might have hundreds or thousands of
tablets, but each tablet is stored on a single server within
a region. A typical tablet in our implementation is a few

Ordered table with primary key of type STRING

Tablet 1 Tablet 2

SU 1

Tablet 3

SU 3

Tablet 4

SU 2

Tablet 5

SU 1SU 3

"g
ra

pe
"

"b
an

an
a"

"l
em

on
"

"p
ea

ch
"

M
IN

_S
T

R
IN

G

M
A

X
_S

T
R

IN
G

0x
F

F
F

F

Tablet 1 Tablet 2

SU 1

Tablet 3

SU 3

Tablet 4

SU 2

Tablet 5

SU 1

Hash table with primary key of type STRING
Tablet boundaries defined by Hash(Primary Key)

SU 3

0x
10

2F

0x
00

00

0x
4A

44

0x
94

3D

0x
A

44
3

(a) (b)

Figure 2: Interval mappings: (a) ordered table, (b) hash table.

hundred megabytes or a few gigabytes, and contains thou-
sands or tens of thousands of records. The assignment of
tablets to servers is flexible, which allows us to balance load
by moving a few tablets from an overloaded server to an
underloaded server. Similarly, if a server fails, we can divide
its recovered tablets over multiple existing or new servers,
spreading the load evenly.

Three components in Figure 1 are primarily responsible
for managing and providing access to data tablets: the stor-
age unit, the router, and the tablet controller. Storage
units store tablets, respond to get() and scan() requests by
retrieving and returning matching records, and respond to
set() requests by processing the update. Updates are com-
mitted by first writing them to the message broker, as
described in the next section. The storage unit can use any
physical storage layer that is appropriate. For hash tables,
our implementation uses a UNIX filesystem-based hash table
implemented originally for Yahoo!’s user database. For or-
dered tables, we use MySQL with InnoDB because it stores
records ordered by primary key. Schema flexibility is pro-
vided for both storage engines by storing records as parsed
JSON objects.

In order to determine which storage unit is responsible for
a given record to be read or written by the client, we must
first determine which tablet contains the record, and then
determine which storage unit has that tablet. Both of these
functions are carried out by the router. For ordered tables,
the primary-key space of a table is divided into intervals,
and each interval corresponds to one tablet. The router
stores an interval mapping, which defines the boundaries of
each tablet, and also maps each tablet to a storage unit. An
example is shown in Figure 2a. This mapping is similar to a
very large root node of a B+ tree. In order to find the tablet
for a given primary key, we conduct a binary search over
the interval mapping to find the tablet enclosing the key.
Once we find the tablet, we have also found the appropriate
storage server.

For hash-organized tables, we use an n-bit hash function
H() that produces hash values 0 ≤ H() < 2n. The hash
space [0...2n) is divided into intervals, and each interval cor-
responds to a single tablet. An example is shown in Fig-
ure 2b. To map a key to a tablet, we hash the key, and then
search the set of intervals, again using binary search, to lo-
cate the enclosing interval and thus the tablet and storage
unit. We chose this mechanism, instead of a more traditional
linear or extensible hashing mechanism, because of its sym-
metry with the ordered table mechanism. Thus, we can use
the same code to maintain and search interval mappings for
both hash and ordered tables.

The interval mapping fits in memory, making it inexpen-
sive to search. For example, our planned scale is about 1,000

servers per region, with 1,000 tablets each. If keys are 100
bytes (which is on the high end for our anticipated appli-
cations) the total mapping takes a few hundred megabytes
of RAM (containing one key and storage unit address per
tablet.) Note that with tablets that are 500 MB on average,
this corresponds to a database that is 500 terabytes in size.
For much larger databases, the mapping may not fit in mem-
ory, and we will have to use a mapping that is optimized for
disk-based access.

Routers contain only a cached copy of the interval map-
ping. The mapping is owned by the tablet controller,
and routers periodically poll the tablet controller to get any
changes to the mapping. The tablet controller determines
when it is time to move a tablet between storage units for
load balancing or recovery and when a large tablet must be
split. In each case, the controller will update the authori-
tative copy of the mapping. For a short time after a tablet
moves or splits, the routers’ mappings will be out of date,
and requests will be misdirected. A misdirected request re-
sults in a storage unit error response, causing the router
to retrieve a new copy of the mapping from the controller.
Thus, routers have purely soft state; if a router fails, we
simply start a new one and do not perform recovery on the
failed router. The tablet controller is a single pair of ac-
tive/standby servers, but the controller is not a bottleneck
because it does not sit on the data path.

The primary bottleneck in our system is disk seek capacity
on the storage units and message brokers. For this reason,
different PNUTS customers are currently assigned different
clusters of storage units and message broker machines (as
a simple form of quality-of-service and isolation from other
customers). Customers can share routers and tablet con-
trollers. In the future, we would like all customers to be
able to share all components, so that sudden load spikes can
be absorbed across all of the available server machines. How-
ever, this requires us to examine flexible quota and admis-
sion control mechanisms to ensure each application receives
its fair share of the system.

3.2 Replication and Consistency
Our system uses asynchronous replication to ensure low-

latency updates. We use the Yahoo! message broker, a
publish/subscribe system developed at Yahoo!, both as our
replacement for a redo log and as our replication mechanism.

3.2.1 Yahoo! Message Broker
Yahoo! Messsage Broker (YMB) is a topic-based pub/sub

system, which together with PNUTS, is part of Yahoo!’s
Sherpa data services platform. Data updates are consid-
ered “committed” when they have been published to YMB.
At some point after being committed, the update will be

asynchronously propagated to different regions and applied
to their replicas. Because replicas may not reflect the latest
updates, we have had to develop a consistency model that
helps programmers deal with staleness; see Section 2.2.

We are able to use YMB for replication and logging for
two reasons. First, YMB takes multiple steps to ensure mes-
sages are not lost before they are applied to the database.
YMB guarantees that published messages will be delivered
to all topic subscribers even in the presence of single bro-
ker machine failures. It does this by logging the message
to multiple disks on different servers. In our current con-
figuration, two copies are logged initially, and more copies
are logged as the message propagates. The message is not
purged from the YMB log until PNUTS has verified that
the update is applied to all replicas of the database. Second,
YMB is designed for wide-area replication: YMB clusters re-
side in different, geographically separated datacenters, and
messages published to one YMB cluster will be relayed to
other YMB clusters for delivery to local subscribers. This
mechanism isolates individual PNUTS clusters from dealing
with update propagation between regions.

YMB provides partial ordering of published messages. Mes-
sages published to a particular YMB cluster will be deliv-
ered to all subscribers in the order they were published.
However, messages published to different YMB clusters may
be delivered in any order. Thus, in order to provide time-
line consistency, we have developed a per-record mastership
mechanism, and the updates published by a record’s master
to a single YMB cluster are delivered in the published or-
der to other replicas (see the next section). While stronger
ordering guarantees would simplify this protocol, global or-
dering is too expensive to provide when different brokers are
located in geographically separated datacenters.

3.2.2 Consistency via YMB and mastership
Per-record timeline consistency is provided by designat-

ing one copy of a record as the master, and directing all up-
dates to the master copy. In this record-level mastering
mechanism, mastership is assigned on a record-by-record ba-
sis, and different records in the same table can be mastered
in different clusters. We chose this mechanism because we
have observed significant write locality on a per-record ba-
sis in our web workloads. For example, a one week trace
of updates to 9.8 million user ids in Yahoo!’s user database
showed that on average, 85 percent of the writes to a given
record originated in the same datacenter. This high locality
justifies the use of a master protocol from a performance
standpoint. However, since different records have update
affinity for different datacenters, the granularity of master-
ship must be per-record, not per tablet or per table; other-
wise, many writes would pay expensive cross-region latency
to reach the master copy.

All updates are propagated to non-master replicas by pub-
lishing them to the message broker, and once the update is
published we treat it as committed. A master publishes its
updates to a single broker, and thus updates are delivered
to replicas in commit order. Because storage units are so
numerous, we prefer to use cheaper, commodity servers in-
stead of expensive, highly reliable storage. By leveraging the
reliable publishing properties of YMB, we can survive data-
loss failures on storage units—any “committed” update is
recoverable from a remote replica, and we do not have to
recover any data from the failed storage unit itself.

Updates for a record can originate in a non-master re-
gion, but must be forwarded to the master replica before
being committed. Each record maintains, in a hidden meta-
data field, the identity of the current master. If a storage
unit receives a set() request, it first reads the record to
determine if it is the master, and if not, what replica to
forward the request to. The mastership of a record can mi-
grate between replicas. If a user moves from Wisconsin to
California, the system will notice that the write load for the
record has shifted to a different datacenter (using another
hidden metadata field in the record that maintains the ori-
gin of the last N updates) and will publish a message to
YMB indicating the identity of the new master. In the cur-
rent implementation, N = 3, and since our region names are
2 bytes this tracking adds only a few bytes of overhead to
each record.

In order to enforce primary key constraints, we must send
inserts of records with the same primary key to the same
storage unit; this storage unit will arbitrate and decide which
insert came first and reject the others. Thus, we have to
designate one copy of each tablet as the tablet master, and
send all inserts into a given tablet to the tablet master. The
tablet master can be different than the record level master
assigned to each record in the tablet.

3.2.3 Recovery
Recovering from a failure involves copying lost tablets

from another replica. Copying a tablet is a three step pro-
cess. First, the tablet controller requests a copy from a
particular remote replica (the “source tablet”). Second, a
“checkpoint message” is published to YMB, to ensure that
any in-flight updates at the time the copy is initiated are ap-
plied to the source tablet. Third, the source tablet is copied
to the destination region. To support this recovery proto-
col, tablet boundaries are kept synchronized across replicas,
and tablet splits are conducted by having all regions split a
tablet at the same point (coordinated by a two-phase com-
mit between regions). Most of the time in this protocol is
spent transferring the tablet from one region to another.
Note that in practice, because of the bandwidth cost and la-
tency needed to retrieve tablets from remote regions, it may
be desirable to create “backup regions” which maintain a
back-up replica near serving replicas. Then, recovering a
table would involve transferring it from a “region” in the
same or a nearby datacenter, rather than from a geograph-
ically distant datacenter.

3.3 Other Database System Functionality

3.3.1 Query Processing
Operations that read or update a single record can be di-

rectly forwarded to the storage unit holding (the tablet that
contains) the record. However, operations that touch mul-
tiple records require a component that generates multiple
requests and monitors their success or failure. The com-
ponent responsible for multi-record requests is called the
scatter-gather engine, and is a component of the router.
The scatter-gather engine receives a multi-record request,
splits it into multiple individual requests for single records
or single tablet scans, and initiates those requests in parallel.
As the requests return success or failure, the scatter-gather
engine assembles the results and then passes them to the
client. In our implementation, the engine can begin stream-

ing some results back to the client as soon as they appear.
We chose a server-side approach instead of having the client
initiate multiple parallel requests for several reasons. First,
at the TCP/IP layer, it is preferable to have one connection
per client to the PNUTS service; since there are many clients
(and many concurrent processes per client machine) opening
one connection to PNUTS for each record being requested
in parallel overloads the network stack. Second, placing this
functionality on the server side allows us to optimize, for
example by grouping multiple requests to the same storage
server in the same web service call.

Range queries and table scans are also handled by the
scatter gather engine. Typically there is only a single client
process retrieving the results for a query. The scatter gather
engine will scan only one tablet at a time and return results
to the client; this is about as fast as a typical client can
process results. In the case of a range scan, this mecha-
nism simplifies the process of returning the top-K results
(a frequently requested feature), since we only need to scan
enough tablets to provide K results. After returning the
first set of results, the scatter-gather engine constructs and
returns a continuation object, which allows the client to re-
trieve the next set of results. The continuation object con-
tains a modified range query, which, when executed, restarts
the range scan at the point the previous results left off. Con-
tinuation objects allow us to have cursor state on the client
side rather than the server. In a shared service such as
PNUTS, it is essential to minimize the amount of server-
side state we have to manage on behalf of clients.

Future versions of PNUTS will include query optimization
techniques that go beyond this simple incremental scanning.
For example, if clients can supply multiple processes to re-
trieve results, we can stream query results back in parallel,
achieving more throughput and leveraging the inherently
parallel nature of the system. Also, if a client has specified
a predicate for a range or table scan, we might have to scan
multiple tablets in order to find even a few matching results.
In this case, we will maintain and use statistics about data
to determine the expected number of tablets that must be
scanned, and scan that many tablets in parallel for each set
of results we return.

We have deliberately eschewed complex queries involving
joins and aggregation, to minimize the likelihood of unantic-
ipated spikes in system workload. In future, based on expe-
rience with the system and if there is strong user demand, we
might consider expanding the query language, since there is
nothing in our design that fundamentally prevents us from
supporting a richer query language.

3.3.2 Notifications
PNUTS provides a service for notifying external systems

of updates to data, for example to maintain an external data
cache or populate a keyword search engine index. Because
we already use a pub/sub message broker to replicate up-
dates between regions, providing a basic notification service
involves allowing external clients to subscribe to our message
broker and receive updates. This architecture presented two
main challenges. First, there is one message broker topic per
tablet, and external subscribers need to know which topics
to subscribe to. However, we want to isolate clients from
knowledge of tablet organization (so that we can split and re-
organize tablets without having to notify clients). Therefore,
our notification service provides a mechanism to subscribe

to all topics for a table; whenever a new topic is created
due to a tablet split, the client is automatically subscribed.
Second, slow clients can cause undelivered messages to back
up on the message broker, consuming resources. Our cur-
rent policy is to break the subscriptions of slow notification
clients and discard their messages when the backlog gets too
large. In the future, we plan to examine other policies.

3.4 Hosted Database Service
PNUTS is a hosted, centrally-managed database service

shared by multiple applications. To add capacity, we add
servers. The system adapts by automatically shifting some
load to the new servers. The bottleneck for some applica-
tions is the number of disk seeks that can be done concur-
rently; for others it is the amount of aggregate RAM for
caching or CPU cycles for processing queries. In all cases,
adding more servers adds more of the bottleneck resource.
When servers have a hard failure (such as a burnt out power
supply or RAID controller failure), we automatically recover
by copying data (from a replica) to other live servers (new
or existing), carrying out little or no recovery on the failed
server itself. Our goal is to scale to more than ten worldwide
replicas, each with 1,000 or more servers. At this scale, auto-
mated failover and load balancing is the only way to manage
the operations load.

This hosted model introduces several complications that
must be dealt with. First, different applications have differ-
ent workloads and requirements, even within our relatively
narrow niche of web serving applications. Therefore, the
system must support several different workload profiles, and
be automatically or easily tunable to different profiles. For
example, our mastership migration protocol adapts to the
observed write patterns of different applications. Second, we
need performance isolation so that one heavyweight appli-
cation does not negatively impact the performance of other
applications. In our current implementation, performance
isolation is provided by assigning different applications to
different sets of storage units within a region.

4. PNUTS APPLICATIONS
In this section, we briefly describe the Yahoo! applica-

tions that motivated and influenced PNUTS. Some of these
applications are currently running on PNUTS, while others
are planned to do so in future.

User Database Yahoo!’s user database has hundreds of
millions of active user IDs, and billions of total IDs. Each
record contains user preferences, profile information and us-
age statistics, as well as application-specific data such as
the location of the user’s mail home or their Yahoo! Instant
Messenger buddy list. Data is read and possibly written
on every user page view, and thus the volume of traffic is
extremely high. The massive parallelism of PNUTS will
help support the huge number of concurrent requests. Also,
our asynchrony model provides low latency, which is critical
given the need to read and often write the user database
on every page view. User data cannot be lost, but relaxed
consistency is acceptable: the user must see his own changes
but it is fine if other users do not see the user’s changes for
some time. Thus, our record timeline model is a good fit.
The user database also functions well under a hosted service
model, since many different applications need to share this
data.

Social Applications Social and “Web 2.0” applications
require a flexible data store that can support operations
geared around information sharing and connections between
users. The flexible schemas of PNUTS will help support
rapidly evolving and expanding social applications. Sim-
ilarly, the ordered table abstraction is useful to represent
connections in a social graph. We can create a relationship
table with a primary key that is a composite of (Friend1,
Friend2), and then find all of a user’s friends by request-
ing a range scan for all records with key prefixed by a given
user ID. Because such relationship data (and other social in-
formation) is useful across applications, our hosted service
model is a good fit. Social applications typically have large
numbers of small updates, as the database is updated every
time a user posts a photo or writes a blog post. Thus, scala-
bility to high write rates, as provided by our parallel system,
is essential. However, the dissemination of these updates to
other users does not have to be real time, which means that
our relaxed consistency model works well for this applica-
tion. The first set of production applications running on
PNUTS are social applications.

Content Meta-Data Mass storage of data such as mail
attachments, images and video is a challenge at Yahoo! and
many other web companies. While PNUTS is not opti-
mized to provide bulk storage, it can play a crucial role
as the metadata store of a distributed bulk storage system.
While a distributed bulk filesystem may store the actual
file blocks, PNUTS can manage the structured metadata
normally stored inside directories and inodes. One planned
customer of PNUTS will use the system as such a metadata
store, utilizing its scalability and low latency to ensure high
performance for metadata operations such as file creation,
deletion, renaming and moving between directories. The
consistency model of PNUTS is critical to properly manag-
ing this metadata without sacrificing scalability.

Listings Management Comparison shopping sites such
as Yahoo! Shopping aggregate listings of items for sale from
many sources. These sites provide the ability to search for
items and sort by price, ratings, etc. Our ordered table
can be used to store listings, sorted by timestamp, to allow
shopping sites to show the most recent N items. Creating
an index or view of the data (see Section 6) will allow us to
retrieve items sorted by secondary attributes such as price.
Also, the flexible schemas in PNUTS will make it easy to
model the varied attributes of different kinds of products.

Session Data Web sites often maintain per-session state,
and the large number of concurrent sessions active at a large
site like Yahoo! means that a scalable storage system is
needed to manage the state. Strong consistency is not re-
quired for this state, and to enhance performance, appli-
cations may decide to turn off all PNUTS consistency for
session tables. Because managing session state is a com-
mon task across many different web applications, running
PNUTS as a service allows applications to quickly use the
session store without having to architect and implement
their own solution.

5. EXPERIMENTAL RESULTS
We ran a series of experiments to evaluate the perfor-

mance of our system. Our performance metric was average
request latency, since minimizing latency is a primary goal of

Component Servers/region OS

Storage unit 5 FreeBSD 6.3
Message broker 2 FreeBSD 6.3
Router 1 Linux RHEL 4
Tablet controller 1 Linux RHEL 4
Client 1 Linux RHEL 4

Region Machine

West 1, Dual 2.8 GHz Xeon, 4GB RAM,
West 2 6 disk RAID 5 array
East Quad 2.13 GHz Xeon, 4GB RAM,

1 SATA disk

Table 1: Machine configurations for different re-
gions. Storage units and message brokers run on
FreeBSD because of their use of BSD-only packages.
The difference in machine configuration between the
West and East areas results from our using repur-
posed machines for our experiments.

the system. We compared the performance of the hash and
ordered tables. For these experiments, we set up a three-
region PNUTS cluster, with two regions on the west coast
of the United States and one region on the east coast. We
ran our experiments on this test cluster instead of the larger
production system so that we could modify parameters and
code and measure the performance impact. In ongoing work
we are gathering measurements on larger installations.

5.1 Experimental Setup
We used an enhanced version of the production code of

PNUTS in our experiments. The current production ver-
sion supports only hash tables; the enhanced system also
supports ordered tables. The primary change needed to
support ordered tables was to replace the storage engine
(a Yahoo! proprietary disk-based hashtable) with MySQL
using InnoDB to get good range scan performance within a
storage unit. We also needed to modify the router to sup-
port lookup by primary key in addition to hash of primary
key, and the tablet controller to create tablets named by
key range instead of by hash range. The system is written
primarily in C++ with some components, in particular the
tablet controller and the administrative scripts, written in
PHP and Perl. We set up three PNUTS regions, two in
the San Francisco Bay Area in California (regions “West 1”
and “West 2”) and one in Virginia (region “East”). The
configuration of each region is shown in Table 1.

Our database contained synthetically generated 1 KB rec-
ords, replicated across three regions, each with 128 tablets.
We generated workload against the database by running a
workload process on a separate server in each region. Each
process had 100 client threads, for a total of 300 clients
across the system. For each client thread, we specified the
number of requests, the rate to generate requests, the mix
of reads and writes, and the probability that an updated
record was mastered in the same region as the client (called
the “locality”). The values we used for these parameters are
shown in Table 2. In particular, the locality parameter is
based on our measurements of the production Yahoo! user
database. Each update overwrote half of the record. In most
of our experiments the records to be read or written were
chosen randomly according to a uniform distribution. We
also experimented with a Zipfian distribution to measure the
impact of skew on our system.

Total clients 300
Requests per client 1,000
Request rate 1200 to 3600 requests/sec

(4 to 12 requests/sec/client)
Read:write mix 0 to 50 percent writes
Locality 0.8

Table 2: Experimental parameters

5.2 Inserting Data
Our experiment client issues multiple insertion requests

in parallel. In the hash table case, record insertions are nat-
urally load balanced across storage servers because of the
hashing function, allowing us to take advantage of the paral-
lelism inherent in the system. Recall that to enforce primary
key constraints, we must designate a “tablet master” where
all inserts are forwarded. We used 99 clients (33 per region)
to insert 1 million records, one third into each region; in this
experiment the tablet master region was West 1. Inserts re-
quired 75.6 ms per insert in West 1 (tablet master), 131.5
ms per insert into the non-master West 2, and 315.5 ms per
insert into the non-master East. These results show the ex-
pected effect that the cost of inserting is significantly higher
if the insert is initiated in a non-master region that is far
away from the tablet master. We experimented with vary-
ing the number of clients and found that above 100 clients,
increasing contention for tablets introduced higher latency
and in some cases timeouts on insertions. We can add stor-
age units to alleviate this problem. Insertion time for the
ordered table showed a similar trend, requiring 33 ms per
insert in West 1, 105.8 ms per insert in the non-master West
2, and 324.5 ms per insert in the non-master East. These
measurements demonstrate that MySQL is faster than our
hashtable implementation under moderate load. However, if
the concurrent insert load on the system is too high, MySQL
experiences a performance drop due to contention (in par-
ticular, concurrent inserts into the primary key index). For
this reason, when inserting into the ordered table we only
used 60 clients. Again, more storage units would help. (For
performance on bulk-loading records into an ordered table in
primary key order, see [25]; this operation requires special
handling in order to achieve high parallelism.) Our storage
unit implementation is not particularly optimized; for ex-
ample out of the 75.6 ms latency per insert into the hash
table, 40.2 ms was spent in the storage unit itself, obtaining
locks, updating metadata structures and writing to disk. It
should be possible to optimize this performance further.

5.3 Varying Load
We ran an experiment where we examined the impact

of increased load on the average latency for requests. In
this experiment, we varied the total request rate across the
system between 1200 and 3600 requests/second, while 10
percent of the requests were writes. The results are shown
in Figure 3. The figure shows that latency decreases, and
then increases, with increasing load. As load increases, con-
tention for resources (in particular, disk seeks) increases,
resulting in higher latency. The exception is the left portion
of the graph, where latency initially decreases as load in-
creases. The high latency at low request rate resulted from
an anomaly in the HTTP client library we used, which closed
TCP connections in between requests at low request rates,
requiring expensive TCP setup for each call. This library

 0

 20

 40

 60

 80

 100

 120

 140

 1200 1800 2400 3000

A
vg

. L
at

en
cy

 (
m

s)

Requests per second

Hash table
Ordered table

Figure 3: Impact of varying request rate on the av-
erage request latency.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50

A
vg

. L
at

en
cy

 (
m

s)

Write percentage

Hash table
Ordered table

Figure 4: Impact of varying read:write ratio on the
average request latency.

should be optimized or replaced to ensure high performance
even for lower request rates. Also, while the largest request
rate we targeted was 3,600 requests/second, the clients were
only able to achieve 3,090 requests/second for the ordered
table and 2,700 requests/second for the hash table. Because
clients sent requests serially, the high latency limited the
maximum request rate.

5.4 Varying Read/Write Ratio
Next, we examined the effect of the read/write mix on la-

tency. We varied the percentage of writes between 0 and 50
percent of requests, while keeping the request rate at 1200
requests/second. The results are shown in Figure 4. As
the proportion of reads increases, the average latency de-
creases. Read requests can be satisfied by a local copy of
the data, while write requests must be satisfied by the mas-
ter record. When a write request originates in a non-master
region (20 percent of the time), it must be forwarded to
the master region, incurring high latency. Thus, when the
proportion of writes is high, there is a large number of high-
latency requests, resulting in a large average latency. In
particular, writes that had to be forwarded from the east to
the west coast, or vice versa, required 324.4 ms on average
compared to 92.0 ms on average for writes that could com-
plete locally; these measurements are for the hash table but
measurements for the ordered table were comparable. As
the number of writes decreases, more requests can be satis-
fied locally, bringing down the average latency. This result
demonstrates the benefit of our timeline consistency model:
because most reads can be satisfied by local, but possibly
stale data, read latency is low. Even the higher latency for

 0

 20

 40

 60

 80

 100

 120

 0 0.25 0.5 0.75 1

A
vg

. L
at

en
cy

 (
m

s)

Zipf Factor

Hash table
Ordered table

Figure 5: Impact of varying the
skew of requests on the average re-
quest latency.

 0

 20

 40

 60

 80

 100

 120

 140

 2 2.5 3 3.5 4 4.5 5

A
vg

. L
at

en
cy

 (
m

s)

Number of storage units

Hash table
Ordered table

Figure 6: Impact of varying the
number of storage units on the av-
erage request latency.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
vg

. L
at

en
cy

 (
m

s)

Percent of table scanned

300 clients
30 clients

Figure 7: Impact of varying the
size of range scans on the average
request latency.

writes is mitigated by the fact that per-record mastering al-
lows us to assign the master to the region with the most
updates for a record. The “bump” observed at 30 percent
writes for the hash table is an anomaly; on examining our
numbers we determined that there was unusually high la-
tency within the datacenter where our West 1 and West 2
regions reside, most likely due to congestion caused by other
systems running in the datacenter.

5.5 Varying Skew
We also examined a workload where the popularity of

records was non-uniform. It has been observed that web
workloads often exhibit Zipfian skew [7]. We ran an exper-
iment where the probability of requesting a record varied
according to a Zipfian distribution, with the Zipf parameter
varying from 0 (uniform) to 1 (highly skewed). The work-
load had 10 percent writes, and 1,200 requests/second. The
results in Figure 5 show that for the hash table, average
request latency first increases, and then decreases slightly
with higher skew. More skew causes more load imbalance
(and higher latency), but this effect is soon outweighed by
better cache locality for popular records (resulting in lower
latency). In the ordered table, the improved caching always
dominates, resulting in better latency with more skew.

5.6 Varying Number of Storage Units
Next, we examined the impact of the number of storage

units on latency. One of the main advantages of our sys-
tem is the ability to scale by adding more servers. We var-
ied the number of storage units per region from 2-5. The
workload had 10 percent writes, and 1,200 requests/second.
The results are shown in Figure 6. As the figure shows,
latency decreases with increasing number of storage units.
More storage units provide more capacity, in particular disk
seek capacity, reducing the latency of individual requests.
The decrease is roughly linear; we attribute the not-quite-
linearity of the hash table result to experimental noise.

5.7 Varying Size of Range Scans
Finally, we examined the impact of range scan size on

latency. This experiment was run only with the ordered
table. The hash table inherently does not support range
scans by primary key unless we do an expensive table scan.
We varied the size of range scans between 0.01 percent and
0.1 percent of the total table. We also conducted runs with
30 clients (10 per region) and 300 clients (100 per region).

The results are shown in Figure 7. As the figure shows, the
time to range scan increases linearly with the size of the scan.
However, the average completion time for the whole range
scan is much higher when there are more clients running.
Range scanning is a fairly heavyweight process, and with
more range scans occurring concurrently, all of the system
resources (disk, CPU and bandwidth) become overloaded.

6. LONG TERM VISION
PNUTS was designed from the ground up to support a

variety of advanced functionality, such as indexes over data.
However, building a complex system required us to build in
phases, and we have first built the basic table storage and
consistency layers described in this paper. In this section,
we describe some advanced functionality under design and
development; the goal is to support them in the production
platform over the next year or two.

6.1 Indexes and Materialized Views
In order to support efficient query processing, it is often

critical to provide secondary indexes and materialized views.
In our system, indexes and views will be treated equiva-
lently; an index is just a special case of a view that provides
efficient look up or range scans on secondary attributes of
the base table. Our indexes and views will be stored as
regular ordered tables, but are asynchronously maintained
by the system. An index/view maintainer will listen to
the stream of updates from message broker, and generate
corresponding updates. For example, if a user moves from
Wisconsin to California, and we have an index on location,
the maintainer will delete the Wisconsin index entry for the
user and insert a California index entry for the user. Further
research is needed to examine the semantic implications of
answering queries using possibly stale indexes and views.

6.2 Bundled Updates
Several customers have expressed a need for an exten-

sion of the consistency guarantees we provide (Section 2.2).
The extension, called bundled updates, provides atomic, non-
isolated updates to multiple records. That is, all updates in
the bundle are guaranteed to eventually complete, but other
transactions may see intermediate states resulting from a
subset of the updates. For example, if Alice and Bob accept
a bi-directed social network connection, we need to update
both Alice’s and Bob’s records to point to the other user.
Both updates need to complete (and the application writer

would prefer not to check and retry to ensure this, as in
the current system) but it is not critical to provide seri-
alizability; it is ok if Alice is temporarily a friend to Bob
but not vice-versa. The challenges in implementing bundled
updates are to ensure the timeline consistency guarantees
described in Section 2.2 when the updates in the bundle are
asynchronously and independently applied, and to provide
a convenient mechanism for the client to determine when all
updates in the bundle have completed.

6.3 Batch-Query Processing
Although PNUTS is optimized for web OLTP workloads,

we believe that it can also serve as a data store for batch
and bulk processing, such as that provided by MapReduce
or Pig. This requires further investigation of how a scan-
oriented bulk workload interacts with a seek-oriented serving
workload. It may be necessary to separate PNUTS replicas
into “batch” and “serving,” and optimize them separately
for the different workloads. Also, parallel batch systems op-
timize their execution based on the current location of data,
and therefore we may need to provide hooks for accessing
tablets directly, bypassing routers.

7. RELATED WORK
Distributed and Parallel Databases
Distributed and parallel databases have been around for

decades [13]. Much of the work has focused on distributed
query processing [19] and distributed transactions [16]. While
our thinking has been heavily influenced by this work, our
simplified query language and weakened consistency model
means that many prior techniques are not applicable.

Recent interest in massively scalable databases has pro-
duced several systems, each optimized for a different point
in the design space. Google’s BigTable [8] provides record-
oriented access to very large tables, but to our knowledge
there have been no publications describing support for ge-
ographic replication, secondary indexes, materialized views,
the ability to create multiple tables, and hash-organized ta-
bles. Amazon’s Dynamo [12] is a highly-available system
that provides geographic replication via a gossip mechanism,
but its eventual consistency model does not adequately sup-
port many applications, and it does not support ordered
tables. Sharding is a technique for partitioning a database
over a large number of commodity database machines, and
is used, for example, in the data architecture for Yahoo!’s
Flickr website. However, sharding systems do not typi-
cally provide automated data migration between machines
or shard splitting, both of which are needed to minimize
operational cost. Other large scale distributed storage sys-
tems include Amazon’s S3 and SimpleDB services, and Mi-
crosoft’s CloudDB initiative, but there is little information
publicly available about the architecture of these systems.

Distributed Filesystems
Distributed filesystems are another option for large scale

storage. Examples include Ceph [27], Boxwood [20], and
Sinfonia [3]. These systems are designed to be object stores
rather than databases. Boxwood does provide a B-tree im-
plementation, but the design favors strict consistency over
scalability, limiting the scale to a few tens of machines. Sim-
ilarly, Sinfonia provides a simplified transaction type called
“minitransactions” which are based on an optimized two-
phase commit protocol. Even this optimized protocol re-
quires communication among participants and limits scala-

bility. PNUTS aims to provide much richer database func-
tionality at scale than these systems.

Distributed Hash Tables
Widely distributed hash tables (DHTs) based on peer-to-

peer architectures include Chord [26], Pastry [24] and a host
of other systems. While DHTs themselves provide primarily
object routing and storage, higher level filesystems [9] and
database systems [18] have been built on top of them. These
systems do not provide an ordered table abstraction, and
focus on reliable routing and object replication in the face
of massive node turnover. Since PNUTS runs in managed
datacenters, we can focus instead on high performance and
low latency using simpler routing and replication protocols.

Data Routing
Distributed data systems require a mechanism for finding

data that has been spread across hosts. Several investigators
have argued for using a hash function that automatically as-
signs data to servers [14, 28]. We decided to use the direct
mapping approach instead for two reasons. First, in an or-
dered table, some tablets may become hotspots (e.g., tablets
holding the most recent data in a date range). We need the
flexibility provided by direct mapping to move hot tablets to
underloaded servers. Second, we need a router layer to ab-
stract away the actual location of data from clients so that
we can change the servers or data partitioning without im-
pacting clients. Since we need a routing layer anyway, using
direct mapping adds no additional network latency.

Asynchronous Replication and Consistency
While serializability can be provided in distributed data-

bases using two-phase commit protocols [16] or optimistic
concurrency control [6], full serializability limits scalabil-
ity [17]. At our scale, serializability is just not feasible, and
so we provide a weaker, but still meaningful, consistency
model (record-level timeline consistency).

Asynchronous replication has been used in other systems
to provide both robustness and scalability. Master-slave
replication is the canonical example [22, 10]. PNUTS ex-
tends master-slave replication by making the granularity
of mastership be the record, by permitting mastership to
change temporarily or permanently, and by ensuring time-
line consistency (but not stronger semantics) despite stor-
age server failures or mastership changes. Epidemic replica-
tion [23] is another example, and variants of epidemic repli-
cation are used in gossip systems such as Dynamo [12]. Epi-
demic replication usually provides “eventual consistency,”
where updates are committed in different orders at differ-
ent replicas, and replicas are eventually reconciled. In this
model, it is possible to read updates that will later be rolled
back during reconciliation. In the default timeline consis-
tency model of PNUTS, such “dirty data” is not visible,
which is a key requirement for many of our applications.
PNUTS does provide a relaxed consistency mode that is
similar to eventual consistency for availability reasons, and
applications can choose which mode they want.

8. CONCLUSIONS
PNUTS aims for a design point that is not well served

by existing systems: rich database functionality and low
latency at massive scale. While developing PNUTS, we
have had to balance several tradeoffs between functionality,
performance and scalability. In particular, we have chosen
asynchronous replication to ensure low write latency while
providing geographic replication. We developed a consis-

tency model that provides useful guarantees to applications
without sacrificing scalability. We built a hosted service
to minimize operations cost for applications, and focused
on automated tuning, optimization and maintenance of the
hosted service. We also limited the features to those that
were truly needed and could be provided preserving reliabil-
ity and scale. These design decisions have resulted in several
novel aspects of our system: per-record timeline consistency
to make it easier for applications to cope with asynchronous
replication; a message broker that serves both as the replica-
tion mechanism and redo log of the database; and a flexible
mapping of tablets to storage units to support automated
failover and load balancing. The resulting system provides
a useful platform for building a variety of web applications,
as demonstrated by the applications that have already been
built, or are in development, using PNUTS. Experimental
results show that the system performs well under a variety
of load conditions, and that our ordered table implementa-
tion provides high performance for both individual record
lookups and range scans.

The first version of our system has entered production,
serving data for some of Yahoo!’s social applications. This
production instance uses hash-organized tables. Notably,
ordered tables are not yet provided. While we have a first
implementation of this functionality, and conducted experi-
ments comparing ordered and hash tables (see Section 5), or-
dered tables will only enter production later this year. Other
described functionality is currently implemented in a simpli-
fied form. For example, our load balancer currently follows a
simple policy of keeping the number of tablets roughly equal
on all storage units, but does not account for varying load
between tablets. As we continue to add enhanced function-
ality, such as indexes, PNUTS will expand its role as the
hosted data serving platform for Yahoo!’s web applications.

9. REFERENCES
[1] Eventually consistent.

http://www.allthingsdistributed.com/2007/12/-
eventually consistent.html.

[2] Trading consistency for scalability in distributed
architectures.
http://www.infoq.com/news/2008/03/ebaybase, 2008.

[3] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: A new paradigm for
building scalable distributed systems. In SOSP, 2007.

[4] P. Bernstein, N. Dani, B. Khessib, R. Manne, and
D. Shutt. Data management issues in supporting
large-scale web services. IEEE Data Engineering
Bulletin, December 2006.

[5] P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[6] P. A. Bernstein and N. Goodman. Timestamp-based
algorithms for concurrency control in distributed
database systems. In Proc. VLDB, 1980.

[7] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web caching and zipf-like distributions:
Evidence and implications. In Proc. INFOCOM, 1999.

[8] F. Chang et al. Bigtable: A distributed storage system
for structured data. In OSDI, 2006.

[9] F. Dabek, M. F. Kaashoek, D. R. Karger, R. Morris,
and I. Stoica. Wide-area cooperative storage with

CFS. In Proc. SOSP, 2001.

[10] K. Daudjee and K. Salem. Lazy database replication
with snapshot isolation. In Proc. VLDB, 2006.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

[12] G. DeCandia et al. Dynamo: Amazon’s highly
available key-value store. In SOSP, 2007.

[13] D. J. DeWitt and J. Gray. Parallel database systems:
The future of high performance database processing.
CACM, 36(6), June 1992.

[14] I. Stoica et al. Consistent hashing and random trees:
distributed caching protocols for relieving hot spots on
the World Wide Web. In Proc. ACM STOC, 1997.

[15] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google File System. In Proc. SOSP, 2003.

[16] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[17] P. Helland. Life beyond distributed transactions: an
apostate’s opinion. In Proc. Conference on Innovative
Data Systems Research (CIDR), 2007.

[18] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham,
Boon Thau Loo, Scott Shenker, and Ion Stoica.
Querying the internet with pier. In Proc. VLDB, 2003.

[19] D. Kossmann. The state of the art in distributed
query processing. ACM Computing Surveys,
32(4):422–469, 2000.

[20] J. MacCormick, N. Murphy, M. Najork, C. A.
Thekkath, and L. Zhou. Boxwood: Abstractions as the
foundation for storage infrastructure. In OSDI, 2004.

[21] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language for
data processing. In Proc. SIGMOD, 2008.

[22] E. Pacitti, P. Minet, and E. Simon. Fast algorithms
for maintaining replica consistency in lazy master
replicated databases. In VLDB, 1999.

[23] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.
Theimer, and A. J. Demers. Flexible update
propagation for weakly consistent replication. In Proc.
SOSP, 1997.

[24] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location and routing for
large-scale peer-to-peer systems. In Middleware, 2001.

[25] A. Silberstein, B. F. Cooper, U. Srivastava, E. Vee,
R. Yerneni, and R. Ramakrishnan. Efficient bulk
insertion into a distributed ordered table. In Proc.
SIGMOD, 2008.

[26] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proc.
SIGCOMM, 2001.

[27] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Proc. OSDI, 2006.

[28] S. A. Weil, S. A. Brandt, E. L. Miller, and
C. Maltzahn. CRUSH: Controlled, scalable,
decentralized placement of replicated data. In Proc.
Supercomputing (SC), 2006.

